

# **AIR HANDLING UNIT INTERFACE**

**AHU-KIT-SP2** 

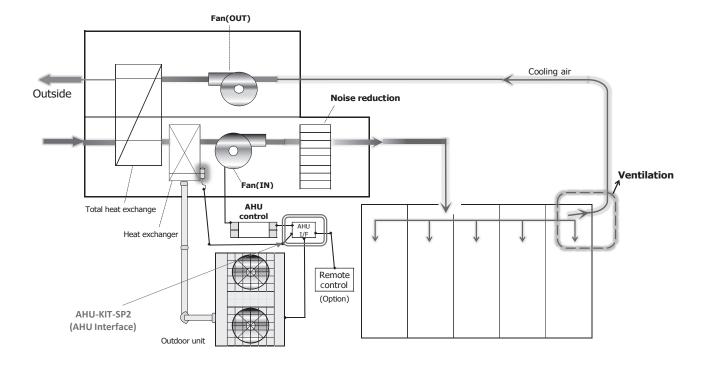
MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.

## **CONTENTS**

| I. AHU-KIT-S | P2 - Overall composition                                    | 4  |
|--------------|-------------------------------------------------------------|----|
| 1.1 Produc   | t description                                               | 4  |
| (1) Wh       | at is Air Handling Unit?                                    | 4  |
| (2) Wh       | at is AHU-KIT-SP2?                                          | 5  |
| (3) Sys      | tems based on AHU Interface                                 | 6  |
| (a)          | Single refrigerant line system                              | 6  |
| (b)          | Multiple refrigerant line system                            | 7  |
| (c)          | AHU Interface input/output/in-output circuit                | 8  |
| (4) AHI      | J Interface check sheet                                     | 8  |
| (5) Rar      | nge of use                                                  | 8  |
| 1.2 How to   | use                                                         | 9  |
| 1.2.1 AIF    | HANDLING UNIT INTERFACE check sheet                         | 9  |
| (1) Cor      | nfirmation of design conditions (Air capacity,              |    |
| suc          | tion air temperature/humidity, target temperature/humidity) | 10 |
| (a)          | Design air condition                                        | 10 |
| (b)          | Air capacity condition                                      | 10 |
| (C)          | Total heat exchanger                                        | 10 |
| (d)          | Humidifier, Heater                                          | 10 |
| (e)          | Design requirement capacity condition                       | 10 |
| (f)          | Piping length                                               | 10 |
| (g)          | Height difference between in-/outdoor units                 | 10 |
| (2) Cor      | nfirmation of heat exchanger specifications                 | 11 |
| (a)          | Heat exchanger calculating conditions                       | 11 |
| (b)          | Connecting pipe size                                        | 11 |
| (c)          | Recommended number of heat exchanger circuits               | 11 |
| (d)          | Recommended number of heat exchanger columns                | 11 |
| (e)          | Design pressure of heat exchanger                           | 11 |
| (f)          | Allowable volume and minimum air capacity standard          |    |
|              | for heat exchanger                                          | 11 |
| (3) Out      | door unit selection                                         | 12 |
| (a)          | Confirmation of the range of use                            | 12 |
| (b)          | Correction coefficient A                                    |    |
| (c)          | Correction coefficient B                                    | 12 |

| (d)      | Correction coefficient C                            | 12 |
|----------|-----------------------------------------------------|----|
| (e)      | Correction coefficient D                            | 12 |
| (f)      | Calculation of total correction coefficient         | 12 |
| (g)      | Calculation of rated capacity of outdoor unit       | 13 |
| (h)      | Confirmation of volume of internal heat exchanger   | 13 |
| (4) Se   | lect control method and settings                    | 14 |
| (a)      | Capacity Control SW7-4: OFF                         | 14 |
| (b)      | Temperature Control SW7-4: ON                       | 15 |
| 1.2.2 Se | ensor installation guidelines                       | 17 |
| _        | oling line system                                   |    |
|          | cooling line system - Outline                       |    |
| -        | ications                                            |    |
|          | HU Interface Master input switch                    |    |
| ` '      | ternal in-/output terminals                         |    |
|          | alog input circuit: X3 connector                    |    |
|          | gital input circuit: X2 connector                   |    |
|          | gital output circuit: X4 connector                  |    |
|          | alog output circuit: X6 connector                   |    |
| ` '      | output circuits                                     |    |
|          | control                                             |    |
|          | peration stop command to AHU system                 |    |
|          | peration mode selection                             |    |
| ` '      | utdoor unit (Compressor) control means selection    |    |
| `        | 1) Capacity Control                                 |    |
| (3-2     | 2) Temperature Control                              | 32 |
|          | efrigerant line system: Cascade control             |    |
|          | de control – Outline                                | 33 |
|          | ence of specifications/setting with cascade control |    |
|          | refrigerant system                                  |    |
|          | out switch                                          |    |
|          | Address setting: SW1                                |    |
|          | Sensor connection                                   |    |
| (2) Ma   | aster/slave in-/output functions in cascade control | 34 |

| 3.3 Basic control                                             | 35 |
|---------------------------------------------------------------|----|
| (1) Capacity distribution control by multiple unit connection | 35 |
| (2) Rotation control                                          | 39 |
| (2-1) Rotation control - Constant capacity control            | 40 |
| (3) Fault backup control                                      | 41 |
| (4) Defrost control - Constant capacity control               | 42 |
| 4. Modbus communication                                       | 43 |
| 4.1 Communication specifications                              | 43 |
| 4.2 Function                                                  | 43 |
| 4.3 Data information                                          | 43 |
| 4.4 Exception response                                        | 44 |
| 4.5 Communication – Outline                                   | 44 |
| 4.6 Input register                                            | 45 |
| 4.7 Holding register                                          | 54 |
| 5. Protection control                                         | 57 |
| 5.1 Cooling frost protection                                  | 57 |
| 5.2 Heating overload protection                               |    |
| 5.3 Compressor inching protection control                     | 58 |
| 5.4 Fan control during defrost control                        | 58 |
| 5.5 Forced compressor OFF control by suction temperature      | 58 |
| 6. Error display                                              | 59 |
| 6.1 Abnormal temperature sensor (return air/heat exchanger)   |    |
| broken wire/short-circuit detection                           | 59 |
| 6.2 Trouble/error detection                                   | 59 |
| 6.3 Trouble/error display                                     | 60 |
| 6.4 Frror mode reset (Frror reset)                            | 60 |


# 1. AHU-KIT-SP2 - Overall composition

## 1.1 Product description

## (1) What is Air Handling Unit?

This system controls air-conditioning by means of a direct expansion air-heat exchanger, which uses the same refrigerant as for air-conditioning as the heat transferring media.

<MHI AHU system (example)>
Example of cooling



#### (2) What is AHU-KIT-SP2?

AHU-KIT-SP2 is the control kit (hereafter AHU Interface), which provides a refrigerant control for Air Handling Unit (hereafter AHU) equipped with a direct expansion heat exchanger to be connected to an outdoor unit for use at a shop.

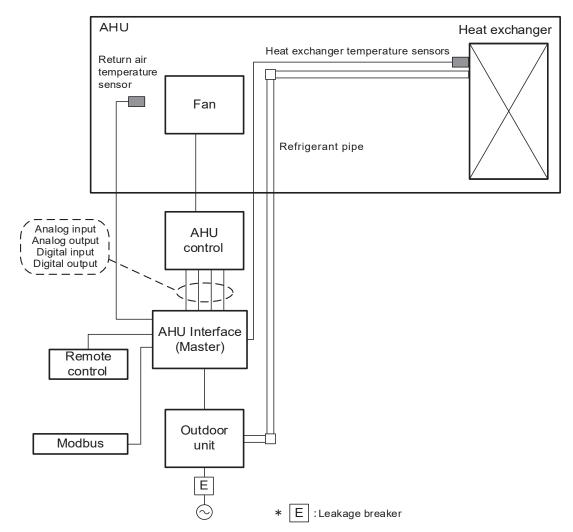
| Item                                                              | Air Handling Unit Interface (AHU Interface)                                                                                                                           |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Туре                                                              | AHU-KIT-SP2                                                                                                                                                           |  |  |
| Connectable outdoor unit                                          | See list below. (*1)                                                                                                                                                  |  |  |
| Environment for use                                               | Temperature: -20 to 60°C, RH: 85% or less (Dewing not allowed)                                                                                                        |  |  |
| Environment for storage                                           | Temperature: -20 to 70°C, RH: 40 to 90% (Dewing not allowed)                                                                                                          |  |  |
| Power source                                                      | Single phase 220 to 240V +10%/-15%, 50Hz, single phase 220V +10%/-15%, 60Hz                                                                                           |  |  |
| Power consumption                                                 | 5W                                                                                                                                                                    |  |  |
| Dimensions (HxWxD)                                                | 109.5mm x 290mm x 57mm                                                                                                                                                |  |  |
| Weight 0.55kg                                                     |                                                                                                                                                                       |  |  |
| Installed on DIN rail TS 35 mm x 7.5 mm (DIN rail to be provided) |                                                                                                                                                                       |  |  |
| Cascade connection                                                | Max. 16 outdoor units can be combined by cascade control. (16 interface units are required.)                                                                          |  |  |
| Power failure compensation                                        | This interface has no battery circuit for recovery after power failure.  Condition to continue operation: Power-out duration – Less than 30 msec.                     |  |  |
|                                                                   | Heat exchanger temperature sensor (Thi-R1, Thi-R2, Thi-R3) x 1 Return air temperature sensor (Thi-A) x 1 Supply air temperature sensor (Thi-AF) x 1 : only monitoring |  |  |
| Accessory                                                         | Heat exchanger spring leaf x 3                                                                                                                                        |  |  |
|                                                                   | Ferrite core x 1 (for function earth connection)                                                                                                                      |  |  |
|                                                                   | Installation manual                                                                                                                                                   |  |  |
|                                                                   | Caution label                                                                                                                                                         |  |  |

## (\*1) Connectable outdoor units

| Madal appacity | Outdoor unit          |                             |  |
|----------------|-----------------------|-----------------------------|--|
| Model capacity | R410A                 | R32                         |  |
| 40/50/60       | SRC40/50/60ZSX-S, -SA | SRC40/50/60ZSX-W1, -W2, -WA |  |
| 71             | FDC71VNX              | FDC71VNX-W                  |  |
| 100/105/140    | FDC100/125/140VN(S)A  | FDC100/125/140VN(S)A-W      |  |
| 100/125/140    | FDC100/125/140VN(S)X  | FDC100/125/140VN(S)X-W      |  |
| 200/250        | FDC200/250VSA         | FDC200/250VSA-W             |  |
| 280            |                       | FDC280VSA-W                 |  |

AHU Interface has an analog input circuit for 0 - 10V, 4 - 20mA as the basic capacity control means for connected outdoor unit. Air conditioning control by remote control may be used as other control method.

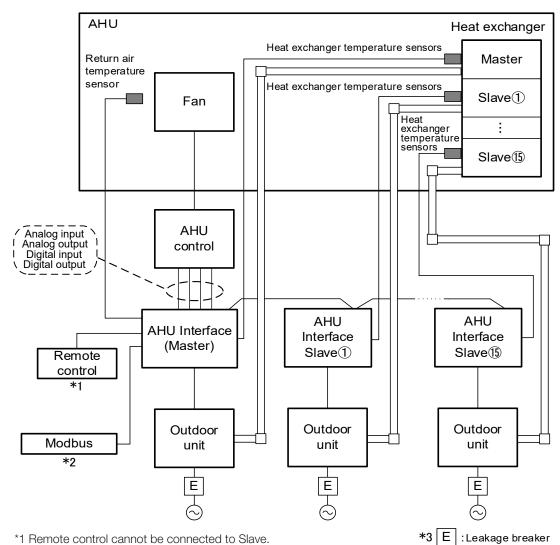
AHU Interface can communicate also on Modbus protocol and control the capacity (0 - 100%) and setting temperature, if necessary. For details, refer to related sections.




AHU Interface outline

## (3) Systems based on AHU Interface

#### (a) Single refrigerant line system

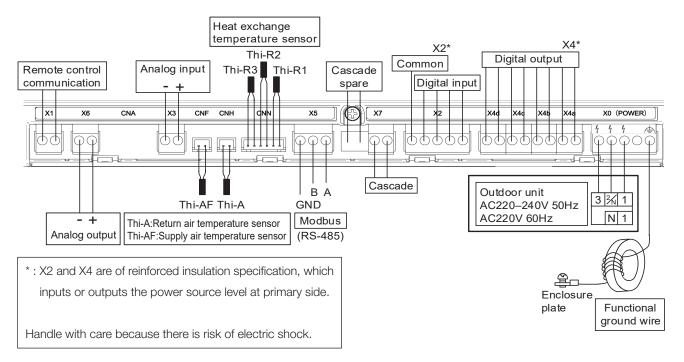

• Single refrigerant line system is a system composed of single refrigerant line, which is controlled with one unit of AHU Interface (Master).



 $<sup>^{\</sup>ast}$  Leakage breaker of the leakage category  ${1}\hspace{-0.1cm}{1}\hspace{-0.1cm}{1}$  must be used.

#### (b) Multiple refrigerant line system (Cascade control)

- Multiple refrigerant line system is a system which installs multiple refrigerant lines on AHU.
- · Since multiple outdoor units can be connected in a system, it is adaptable to a large capacity.
- To this control, a combination of Master and Slave, a combination of maximum 16 units of AHU Interface and outdoor units, including Master, can be connected.
- · Number of units can be controlled from AHU Interface (Master) according to the air-conditioning load.




<sup>\*2</sup> Modbus cannot be connected to Slave.

<sup>\*3</sup> Leakage breaker of the leakage category  ${\, {
m I\hspace{-.1em}I}}$  must be connected.

#### (c) AHU Interface input/output/in-output circuit

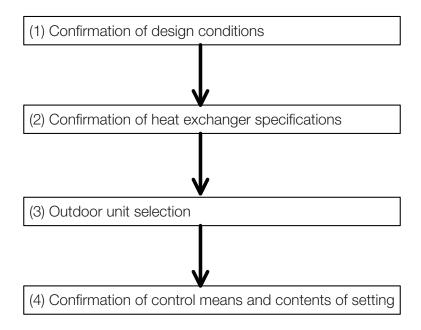
In-/output function of each connector is as follows.



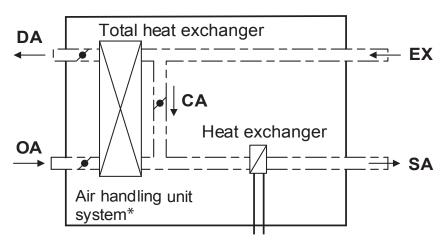
## (4) AHU Interface check sheet

- · Although the heat exchanger is designed according to users' requirements, it needs to be used within the range of use for MHI outdoor unit at the same time.
- · In order to check if the heat exchanger designed according the users' requirements falls within the range of use for air-conditioner, including air condition, utilize the check sheet referred to in 1.2.
- To design a heat exchanger, it is necessary to use the technical data for the outdoor unit to be connected.

  Design and select the heat exchanger according to the check sheet in 1.2 and the technical data of outdoor unit.
- · AHU Interface is one of components for the air handling system, and the product assurance responsibility for entire air handling system is not covered by the assurance by MHI.


#### (5) Range of use

Confirm that the air condition, limitation of pipe length, or other, fall within the range of use for the air-conditioner. For practical range of use, refer to the technical data for the outdoor unit to be connected.


#### 1.2 How to use

## 1.2.1 AIR HANDLING UNIT INTERFACE check sheet

Flow to select the outdoor unit and design the heat exchanger is as shown below.



◇ Refer to the following figure for the definition of design air condition and air capacity.



| List of abbreviations |                 |  |
|-----------------------|-----------------|--|
| EX                    | Exhaust air     |  |
| OA                    | Outdoor air     |  |
| DA                    | Discharge air   |  |
| CA                    | Circulating air |  |
| SA                    | Supply air      |  |

<sup>\*</sup> Due to the system's complexity, the illustration schematic and simplified.

# (1) Confirmation of design conditions (Air capacity, suction air temperature/humidity, target temperature/humidity)

#### (a) Design air condition

| Exhaust air (EX) | Cooling | °CDB | °CWB |
|------------------|---------|------|------|
|                  | Heating | °CDB | °CWB |
| Outdoor oir (OA) | Cooling | °CDB | °CWB |
| Outdoor air (OA) | Heating | °CDB | °CWB |

## (b) Air capacity condition

| Supply air(SA)      | m³/h |
|---------------------|------|
| Circulating air(CA) | m³/h |
| Outdoor air(OA)     | m³/h |

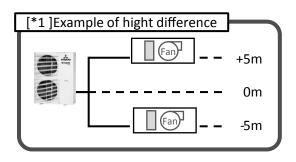
## (c) Total heat exchanger

|                      | with( )                          | without( ) |  |
|----------------------|----------------------------------|------------|--|
|                      | If with, fill in following items |            |  |
| Total heat exchanger | Exchange efficiency              |            |  |
| Troat oxoriarigor    | Outdoor air volume               | m³/h       |  |
|                      | Discharge air volume             | m³/h       |  |

## (d) Humidifier, Heater

| Humidifier | Humidifying volume | kg/h |
|------------|--------------------|------|
| Heater     | Heater capacity    | kW   |

## (e) Design requirement capacity condition


| Requirement          | Cooling |      | kW   |
|----------------------|---------|------|------|
| capacity             | Heating |      | kW   |
| Heat exchanger inlet | Cooling | °CDB | °CWB |
| air condition        | Heating | °CDB | °CWB |

## (f) Piping length

| Piping length | m |
|---------------|---|
|---------------|---|

## (g) Height difference between in-/outdoor units [\*1]





#### (2) Confirmation of heat exchanger specifications

Design the heat exchangers according to following conditions.

#### (a) Heat exchanger calculating conditions

| Cooling evaporator outlet superheat degree | 3degC |
|--------------------------------------------|-------|
| Heating condenser outlet subcool degree    | 1degC |

| Target evaporation temperature        | 5 — 12degC  |
|---------------------------------------|-------------|
| Target<br>condensation<br>temperature | 30 — 47degC |

Calculate the heat exchanger capacity based on the design conditions of (1) and the above temperature condition.

#### (b) Connecting pipe size

Refer to the technical data of connected outdoor unit.

#### (c) Recommended number of heat exchanger circuits

When the pipe size of heat exchanger is  $\phi$  9.52, following number of circuits is recommended.

#### Recommended circuit number for $\phi$ 9.52 tube

| Outdoor unit model capacity | 40    | 50 | 60 | 71    | 100 | 125 | 140    | 200 | 250 | 280 |
|-----------------------------|-------|----|----|-------|-----|-----|--------|-----|-----|-----|
| Recommended circuit         | 2 – 4 |    |    | 4 - 6 |     |     | 6 — 10 |     |     |     |

#### (d) Recommended number of heat exchanger columns

#### Maximum 3 columns is the standard design for heat exchanger.

If it has 4 or more columns, the heat exchanger efficiency will not be good.

Larger number of columns for heat exchanger increases its volume so that it becomes impossible to accommodate in the standard.

#### (e) Design pressure of heat exchanger

Limit the design pressure at  $\geq$  4.15 MPa. This is common to R32 and R410A refrigerants.

#### (f) Allowable volume and minimum air capacity standard for heat exchanger

Limit the volume of heat exchanger within the range listed below for the volume of each outdoor unit.

Air capacity for heat exchanger must be larger than the minimum air capacity in the following list.

| Outdoor unit   | Allowable heat exchanger volume [L] |      | Minimum air volume  |          |
|----------------|-------------------------------------|------|---------------------|----------|
| model capacity | Min.                                | Max. | [m <sup>3</sup> /h] | [m³/min] |
| SRC40          | 0.3                                 | 0.8  | 420                 | 7        |
| SRC50          | 0.3                                 | 0.9  | 420                 | 7        |
| SRC60          | 0.5                                 | 1.1  | 480                 | 8        |
| FDC71          | 0.7                                 | 1.6  | 600                 | 10       |
| FDC100         | 0.7                                 | 2.1  | 840                 | 14       |
| FDC125         | 1.0                                 | 2.2  | 960                 | 16       |
| FDC140         | 1.0                                 | 2.8  | 1080                | 18       |
| FDC200         | 1.2                                 | 4.2  | 1680                | 28       |
| FDC250         | 2.0                                 | 4.4  | 1920                | 32       |
| FDC280         | 2.0                                 | 4.4  | 2160                | 36       |

#### (3) Outdoor unit selection

Select correct outdoor unit by applying the correction value adequate for the condition of use.

Select the outdoor unit according to the following flow.

#### (a) Confirmation of the range of use

Confirm that the air condition, limit of pipe length, or other, fall within the range of use for air-conditioner.

#### (b) Correction coefficient A

Capacity correction according to air condition

Calculate the capacity correction coefficient according to the operation mode.

#### (c) Correction coefficient B

Correction for pipe length

Calculate the capacity correction coefficient.

#### (d) Correction coefficient C

Correction for height difference between in-/outdoor units

Calculate the capacity correction coefficient.

Make this correction only when the outdoor unit is positioned at the bottom during cooling and at the top during heating.

#### (e) Correction coefficient D

Calculate the correction coefficient for frosting on outdoor heat exchanger during heating (heating only) Some models may have no correction coefficient D.

For the confirmation of the range of use and calculation of correction coefficients A to D, refer to the technical data of outdoor unit.

#### (f) Calculation of total correction coefficient

Calculate total correction coefficient by multiplying coefficient A to D.

| Correction coefficient | Cooling | Heating |
|------------------------|---------|---------|
| А                      |         |         |
| В                      |         |         |
| С                      |         |         |
| D                      |         |         |
| Total                  | α       | β       |
| iotai                  |         |         |

| Operation mode | Total correction coefficient                                  |  |  |
|----------------|---------------------------------------------------------------|--|--|
| Cooling        | Correction coefficient $\alpha = A \times B \times C$         |  |  |
| Heating        | Correction coefficient $\beta = A \times B \times C \times D$ |  |  |

#### (g) Calculation of rated capacity of outdoor unit

Confirm that the result of multiplying the rated capacity of selected outdoor unit by the total correction coefficient is larger than the required capacity.

Calculate for the heating and the cooling respectively.

When the capacity is insufficient, reselect the outdoor unit.

| Outdoor unit model | Cooling(rated) | Heating(rated) | Number of units |
|--------------------|----------------|----------------|-----------------|
|                    | kW             | kW             | pcs.            |

| Operation mode | Rated capacity     of selected     outdoor unit | ② ① x Number of outdoor units x Total correction coefficient |    | ① x Number of outdoor units |  | <ul><li>③ Required<br/>capacity<br/>(Necessary<br/>capacity)</li></ul> | Judgment<br>②≧③:OK |
|----------------|-------------------------------------------------|--------------------------------------------------------------|----|-----------------------------|--|------------------------------------------------------------------------|--------------------|
| Cooling        | kW                                              | pcs.                                                         | kW | kW                          |  |                                                                        |                    |
| Heating        | kW                                              | pcs.                                                         | kW | kW                          |  |                                                                        |                    |

## (h) Confirmation of volume of internal heat exchanger

Check **(f)** Allowable volume for heat exchanger of **(2)** Heat exchanger calculating conditions to see if the internal volume of AHU heat exchange is adequate for the selected outdoor unit.

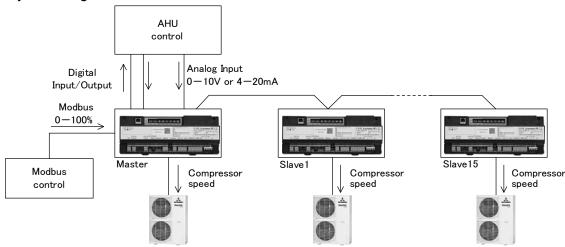
| Outdoor unit model | Number of units | AHU heat exchanger volume to be used(per outdoor unit) |
|--------------------|-----------------|--------------------------------------------------------|
|                    | pcs.            |                                                        |

If it does not satisfy the conditions, set conditions once more.

(Resetting of indoor heat exchanger volume, resetting of outdoor unit volume, etc.)

#### (4) Select control method and settings

The outdoor units can be controlled by one of two methods (Capacity Control or Temperature Control).


Select the suitable control combination (No.1 - No.4) based on the equipment to be installed.

Correct Master/Slave settings are required when using cascading control.

Check each setting by referring to table 1-1, 1-2 in this section.

## (a) Capacity Control SW7-4: OFF (External input:0-10V / 4-20mA / 0-100%)

## System diagram



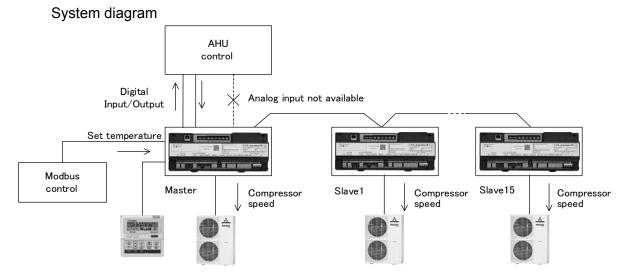

The following control combinations are to be used for Capacity Control.

Table 1-1

| No. | Analog input<br>(0 — 10V/4 — 20mA) | Modbus<br>(0 — 100%) | Remote control (Include SL adaptor) | AHU system<br>How to Run/Stop  |
|-----|------------------------------------|----------------------|-------------------------------------|--------------------------------|
| 1   | *                                  | △ (*1)               | Monitoring only(*2)                 | Digital input<br>or Modbus(*3) |
| 2   | ×                                  | *                    | Monitoring only(*2)                 | Digital input<br>or Modbus(*3) |

- ★ : Main control for Capacity Control
- $\triangle$  : Option control
- × : Not available
- (\*1) Analog input will be invalidated once 0-100% command is sent from the Modbus control. Power reset is required to restore analog input function.
- (\*2) Monitoring purpose only. Operation from remote control is not possible.
- (\*3) Select either of the following ways to Run/Stop the AHU system:
  - Digital input (ON/OFF)
  - Modbus command (Run/Stop)

## (b) Temperature Control SW7-4: ON (Set temperature control:16°C-30°C)



The following control system can be used for Temperature Control.

Table 1-2

| No. | Analog input<br>(0 — 10V/4 — 20mA) | Modbus        | Remote control (Include SL adaptor) | AHU system<br>How to Run/Stop      |
|-----|------------------------------------|---------------|-------------------------------------|------------------------------------|
| 3   | ×                                  | <b>★</b> (*4) | ○ (*4)                              | Digital input,<br>RC or Modbus(*5) |
| 4   | ×                                  | ○ (*4)        | ★ (*4)                              | Digital input,<br>RC or Modbus(*5) |

★: Main control

 $\triangle$ : Option control

× : Not available

(\*4) Last received operation command has priority.

(\*5) Select one of the following ways to Run/Stop the AHU system:

- Digital input (ON/OFF)
- Modbus command (Run/Stop)
- Remote control command (Run/Stop)

| (1) Selected control | system |
|----------------------|--------|
| No.                  |        |

#### 2 Confirmation of peripheral equipment to be connected to AHU Interface

| Item           | Model |
|----------------|-------|
| AHU control    |       |
| Remote control |       |
| Modbus         |       |
| Option         |       |

## ③ Input/Output setting on AHU Interface Check functions to use.

| Connector | Input setting   | Check |
|-----------|-----------------|-------|
| X2-1      | Run/Stop        |       |
| X2-2      | Cooling/Heating |       |
| X2-3      | Emergency stop  |       |
| X2-4      | Reserve         | -     |

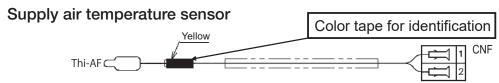
| Connector | Output setting                            | Check |
|-----------|-------------------------------------------|-------|
| X4a       | Outdoor unit error interface error        |       |
| X4b       | Compressor ON                             |       |
| X4c       | Defrost ON                                |       |
| X4d       | Run/Stop, Cooling / Heating, Fan ON / OFF |       |
| X6        | Analog output                             |       |

## 4 AHU Interface Master setting

| Item                            | Setting |
|---------------------------------|---------|
| SW1(Interface address)          |         |
| SW2(Reserve)                    | -       |
| SW3(Reserve)                    | -       |
| SW4(Reserve)                    | -       |
| SW5(Modbus address: ones)       |         |
| SW6(Modbus address: tens)       |         |
| SW7-1(Analog input switching)   |         |
| SW7-2(Modbus bps)               |         |
| SW7-3(Modbus parity setting)    |         |
| SW7-4(Compressor control)       |         |
| SW8-1(Digital output:X4d)       |         |
| SW8-2(Capacity step up control) |         |
| SW8-3(Reserve)                  | -       |
| SW8-4(Reserve)                  | -       |
| JX1(Termination of Modbus)      |         |
| JX2(Analog input switching)     |         |

## (5) AHU Interface slave setting

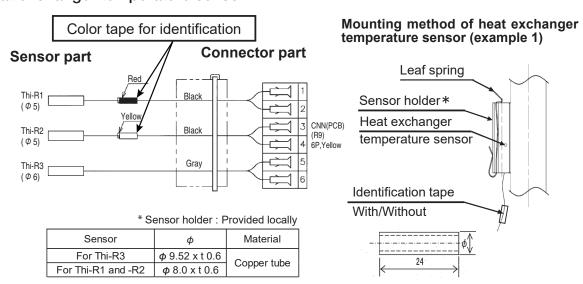
Only SW1 and JX1 setting is required for the Slave Interface.


| AHU Interface No. | SW1(Interface address) | JX1 (Termination of Modbus) |
|-------------------|------------------------|-----------------------------|
| Slave1            |                        |                             |
| Slave2            |                        |                             |
| Slave3            |                        |                             |
| Slave4            |                        |                             |
| Slave5            |                        |                             |
| Slave6            |                        |                             |
| Slave7            |                        |                             |
| Slave8            |                        |                             |
| Slave9            |                        |                             |
| Slave10           |                        |                             |
| Slave11           |                        |                             |
| Slave12           |                        |                             |
| Slave13           |                        |                             |
| Slave14           |                        |                             |
| Slave15           |                        |                             |

## 1.2.2 Sensor installation guidelines

- Install all sensors correctly.
  - Each sensor has particular function so that it must be installed correctly. Otherwise, the system will not function correctly.
- Correct method for installation of temperature sensor (Example)
  - When installing the temperature sensor, confirm that it optimally touches the face to measure.
  - Fix it with a wide hose clamp.

If a cable tie is used, it may break down or crush the temperature sensor. Fix it with a wide hose clamp.






## Temperature detection range

- Return air temperature sensor (Thi-A) and supply air temperature sensor (Thi-AF) can detect temperatures accurately in the range of 14 33 (±1.2)°C.
- Range of use for return air temperature sensor and supply air temperature sensor are -10 to 50°C.

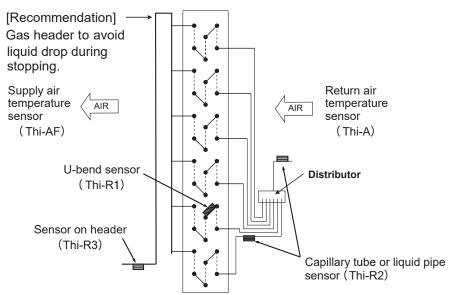
## Heat exchanger temperature sensor



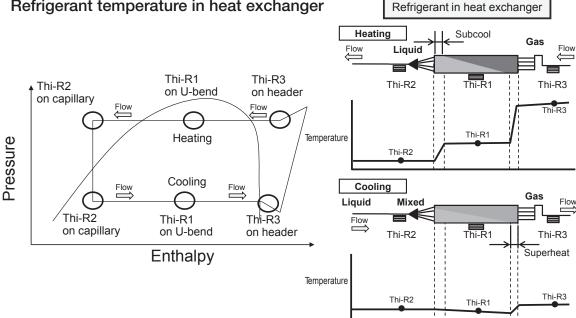
# Mounting method of heat exchanger temperature sensor (example 2)

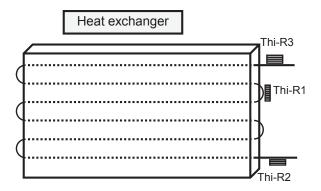
| No. | Designation              | 1 2 3 |
|-----|--------------------------|-------|
| 1   | Temperature sensor cable |       |
| 2   | Temperature sensor       |       |
| 3   | Fastener                 |       |

## • Installation locations of the heat exchanger sensor


- Each heat exchanger requires 3 pieces of heat exchanger sensor.
- Connect heat exchanger sensor connectors to AHU Interface.
- Install each heat exchanger sensor correctly according to the following table.

| Heat exchanger                   | Mounting                              | Detected to             | Purpose                |                          |
|----------------------------------|---------------------------------------|-------------------------|------------------------|--------------------------|
| temperature position             |                                       |                         |                        | Purpose                  |
| Thi-R1                           | Thi-R1 U-bend Evaporating temperature |                         | Condensing temperature | Anti-freezing protection |
| Thi-R2 Capillary                 |                                       | Evaporating temperature | Outlet temperature     | Anti-freezing protection |
| Thi-R3 Header Outlet temperature |                                       | Inlet gas temperature   | EEV-control            |                          |


#### Temperature detection range


- Heat exchanger temperature sensors (Thi-R1, -R2, -R3) can detect temperatures accurately in the range of  $0 - 63 (\pm 2)^{\circ}$ C.
- Range of use for heat exchanger temperature sensor is -30 to 72°C.

## Mounting position of temperature sensors (example)



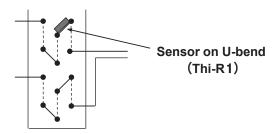
## Refrigerant temperature in heat exchanger





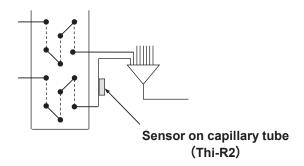
Each sensor has unique function, Important to fix to correct location.

If fixed to incorrect location, the system will not be controlled correctly, double check during commissioning.


The Thi-R3 sensor diameter is larger than the others to avoid mistakes.

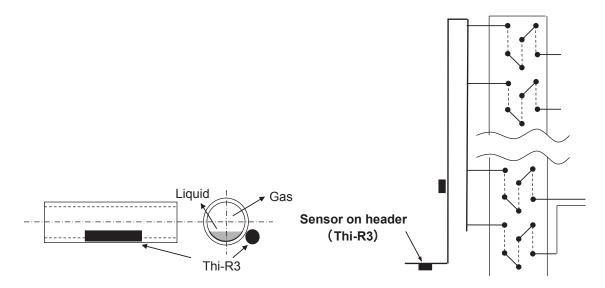
#### • Items to be checked

#### 1. Thi-R1: On U-bend section (with RED tape)


- a) Considering the frost of the heat exchanger in cooling, mount the sensor on the circuit with the lowest temperature among all circuits (Avoid mounting on the lowest position of the circuit). However the circuit in which the liquid refrigerant is not held in heating operation is better.
- b) Mounting the sensor at the middle point of the circuit pass is recommended. If it is mounted near to the header side or the distributor side, it will detect the temperature at the superheat or subcool area, so it cannot detect the actual condensing/evaporating temperature correctly.

Be sure to check whether the refrigerant is in 2-phase flow in the circuit by testing the actual unit.

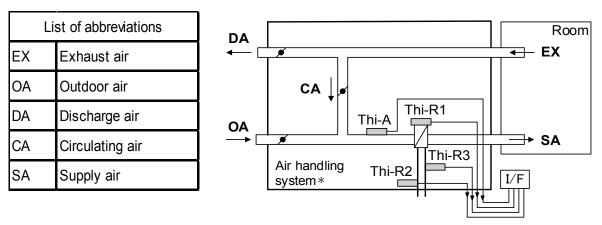



#### 2. Thi-R2: on capillary tube section of distributor (with YELLOW tape)

- a) It should be mounted on the capillary tube section to detect the evaporating temperature under conditions enabling a good response.
- b) It should be mounted in a position that detects the average outlet temperature and not to hold the liquid refrigerant during heating.



#### 3. Thi-R3: On header section (without tape)


- a) It should be mounted on the header main pipe after collecting refrigerant during cooling.
- b) If the header main pipe runs horizontally, be sure to mount the sensor on the side part of the pipe to prevent from evaporating liquid refrigerant.

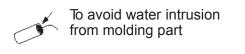


#### 4. Thi-A: Return air temperature sensor (with BLACK tape)

Fixed location

- a) Install the suction temperature sensor at the suction side of heat exchanger.
- b) Position where the air flow does not stagnate.
- c) Position not to be affected by other heat source. (heat exchanger etc.)




<sup>\*</sup>Due to the system's complexity, the illustration schematic and simplified.

- 5. Be careful to mount the sensors in the correct position and by identifying the attached colour tape of each sensor.
- 6. Be sure to confirm whether the temperature of each sensor is correct by actual operation testing at commissioning.

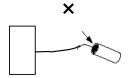
#### Other items to be checked

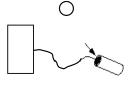
- 1. The indoor heat exchangers should have pockets for installing sensors.
- 2. The indoor heat exchanger temperature sensors should not be affected by other heat sources.
  - Avoid installing the sensors near any electrical devices that generate heat.
  - Wrap the sensors with insulation and check for any temperature or air flow changes.
  - Confirm that the sensors do not touch incorrect piping.
  - The sensors must be installed where the temperature can be measured accurately.
  - The sensors must have a good response and vary correctly.
- 3. The sensor should be inserted into the holder from the bottom side and the wiring should have a trap.

This is to prevent drain water from intruding into the sensor through the gap between the lead wire and the resin at the connecting part of the sensor.

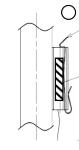





To have a trap


4. The drain water does not intrude into the connection part of the control box through the sensor wire (protective tube).

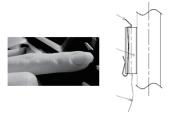
The wiring route must have a trap so that the drain water drops down just before the control box.




5. The sensor wiring should be loose and not tight.






6. The sensors should not be inserted too far into the holder in order to prevent the sensor wire from being damaged.



Wiring may be cut by edge

- 7. The sensors should not make contact with other parts.
- 8. The sensor wiring should not be located where a person can touch it.

If it can be touched, ensure it is covered by a protective tube with a thickness of 1 mm or more. (for safety reasons)



9. The sensors should not be mounted in a position where the drain water accumulates.



10. The sensor wiring should be covered by a protective tube or rerouted to prevent it from being cut by metal edges.

## 2. Single cooling line system

## 2.1 Single cooling line system - Outline

This is a system composed of single refrigerant line (1 outdoor unit), and is controlled with one unit of AHU Interface.

- Since it is necessary to adjust PCB to Master setting, SW1 (Address) must be set at 0.
- · Make sure to connect attached suction air temperature sensor and heat exchanger temperature sensor.
- For specifications of combination outdoor unit, refer to the instruction manual of the outdoor unit.
- AHU Interface outputs externally information on the connected outdoor unit.

  It also transmits the compressor speed command to the outdoor unit in response to external input.

#### <Roles of AHU Interface>

Operation command input

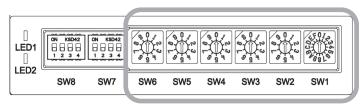
Suction air temperature measurement

Heat exchanger temperature measurement

Operation command to outdoor unit

Outdoor unit status output

## 2.2 Specifications


#### (1) AHU Interface Master input switch

Switch setting

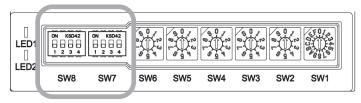
| Item            |              | Switch       | 1        | ltem                         | Remark                                                                  | Default setting |     |       |    |                          |                           |     |
|-----------------|--------------|--------------|----------|------------------------------|-------------------------------------------------------------------------|-----------------|-----|-------|----|--------------------------|---------------------------|-----|
|                 | SW1 Yellow I |              | Yellow   | Interface address            | 0-F (Master: 0)                                                         | 0               |     |       |    |                          |                           |     |
| SW2 Yellow      |              | Spare        | 0, fixed | 0                            |                                                                         |                 |     |       |    |                          |                           |     |
| Rotary          | SI           | N3           | Red      | Spare                        | 0, fixed                                                                | 0               |     |       |    |                          |                           |     |
| switch          | SI           | N4           | Red      | Spare                        | 0, fixed                                                                | 0               |     |       |    |                          |                           |     |
|                 | SI           | N5           | Yellow   | Modbus address (Ones)        | 0-9                                                                     | 0               |     |       |    |                          |                           |     |
|                 | SI           | N6           | Yellow   | Modbus address (Tens)        | 0-9                                                                     | 0               |     |       |    |                          |                           |     |
|                 |              |              | -1       | Analog input selection       | ON: 4 - 20 mA<br>OFF: 0 - 10 V                                          | OFF             |     |       |    |                          |                           |     |
|                 | SW7          | Black        | -2       | Modbus baud rate (bps)       | ON : 9600 bps<br>OFF : 19200 bps                                        | OFF             |     |       |    |                          |                           |     |
|                 | DIP          | JVV/ DIACK F |          | Modbus parity                | ON: NON parity +2 stop bit<br>OFF: Even parity +1 stop bit              | OFF             |     |       |    |                          |                           |     |
| DIP<br>switch   |              |              | -4       | Compressor control           | ON: Temperature control OFF: Capacity control                           | OFF             |     |       |    |                          |                           |     |
|                 |              |              | -1       | Digital output:X4d switching | ON: Cooling/Heating OFF: Setting via Modbus                             | OFF             |     |       |    |                          |                           |     |
|                 | SW8          | SW8          | SW8      | SW8                          | SW8                                                                     | SW8             | SW8 | Black | -2 | Capacity step up control | ON: Valid<br>OFF: Invalid | OFF |
|                 |              |              | -3       | Spare                        | OFF, fixed                                                              | OFF             |     |       |    |                          |                           |     |
|                 |              |              | -4       | Spare                        | OFF, fixed                                                              | OFF             |     |       |    |                          |                           |     |
|                 | JX1          |              | 3P       | Modbus terminal selection    | 1-2 short: No terminal resistor 2-3 short: With terminal resistor, 100Ω | 1-2 short       |     |       |    |                          |                           |     |
| Shorting<br>PIN | J)           | X2           | 3P       | Analog input selection       | 1-2 short: 0 - 10V<br>2-3 short: 4 - 20mA                               | 1-2 short       |     |       |    |                          |                           |     |
|                 | J)           | <b>X</b> 3   | 3P       | Spare                        | 2-3 short                                                               | 2-3 short       |     |       |    |                          |                           |     |

On switches designated as Spare, do not change from the state of 0 or OFF.

#### Rotary switch function



- · Set Master or Slave with SW1.
- On the single refrigerant line system, make sure to set the interface address at 0.
- · SW2 SW4 are spare switches.
- SW5 and SW6 set Modbus communication addresses.


SW5 is for ones place. SW6 is for tens place

This interface becomes Slave on Modbus communication.

Set Modbus addresses in the range of 1 – 99. (Initial address setting: 01)

\* Slave address cannot be set at 0 on Modbus communication.

#### DIP switch function (only Master Unit)



- · SW8-3 to SW8-4 are spares, which must be set at OFF.
- SW7-4 allows selecting methods to control compressor speed rps.

OFF: Commands the required capacity to the outdoor unit (compressor).

ON: Controls the outdoor unit with the air-conditioning control.

#### [SW7-4: OFF] Capacity Control

- The volume control commands the required capacity to the outdoor unit.
- 0 100% can be commanded as the required capacity with following methods.
  - 1) Based on the input voltage (0 10V) or input current (4 20mA) from Analog Input, a value in % corresponding to the voltage or current is commanded to the outdoor unit.
  - 2) The required capacity in 0 100% is commanded to the outdoor unit by Modbus communication.

#### [Supplementary]

Priority is given to Modbus command between Analog Input and Modbus.

If Modbus control transmits a 0 – 100% command, the Analog Input is invalidated.

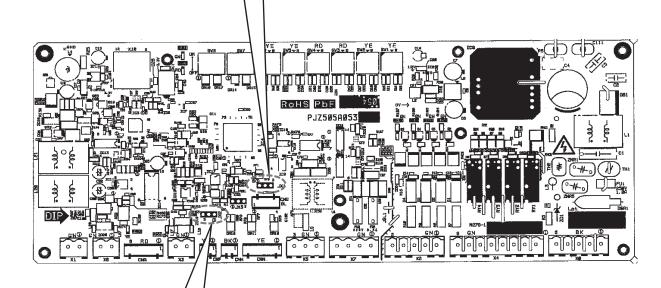
It is necessary to reset the power source to revitalize the disabled analog input.

#### [SW7-4: ON] Temperature Control

- The air-conditioning control controls the outdoor unit by the difference between the temperature sensor value and setting temperature of AHU Interface.
- It controls the outdoor unit so as to bring the suction temperature sensor value to the setting temperature.
- Setting value of AHU Interface can be changed as follows.
  - 1) By changing the setting temperature with remote control.
  - 2) By changing the setting temperature with Modbus communication.

#### [Supplementary]

In the operation to change the setting temperature by remote control and Modbus, the latter takes priority over former.


#### Shorting plug function



JX1

(Termination available/ not available)

1-2 Short : not available 2-3 Short : available 100  $\Omega$ 



PCB of AHU Interface

3 ①

JX2

(Analog input switching)

1-2 Short : 0-10 V 2-3 Short : 4-20 mA

• Functions can be changed by switching shorting plugs on PCB.

• JX1: Select With/No for terminal resister on Modbus communication circuit.

• JX2: Switches the analog input circuit function.

• JX3 is spare. Do not change from the initial setting: 2-3P.

• When setting these, check the numbers on PCB carefully.

## (2) External in-/output terminals

Connector LED

| Item              | Connec<br>LED |                  | Housing | Color      | Function                                                                                                                           | Remark                                                                                                            |
|-------------------|---------------|------------------|---------|------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                   | CNF           | 1                | 2P      | Black      | Return air temperature                                                                                                             | Thi-A                                                                                                             |
|                   | CNF           | =                | 2P      | Yellow     | Supply air temperature                                                                                                             | Thi-AF                                                                                                            |
| Analog            |               |                  |         |            | Heat exchanger (U bend)                                                                                                            | Thi-R1                                                                                                            |
| Analog<br>input   | CNN           | 1                | 6P      | Yellow     | Heat exchanger (capillary)                                                                                                         | Thi-R2                                                                                                            |
|                   |               |                  |         |            | Heat exchanger<br>(Header)                                                                                                         | Thi-R3                                                                                                            |
|                   | ХЗ            |                  | 2P      | Green      | Capacity Control                                                                                                                   | 0 - 10V/4 - 20mA can be selected by JX2 setting.                                                                  |
|                   |               |                  |         |            | X2-1: Run/Stop                                                                                                                     | Power source: AC24 — 240V/DC20 — 130V, 0.5A                                                                       |
| <u></u>           |               |                  |         |            | X2-2: Cooling/heating                                                                                                              | Power source: AC24 — 240V/DC20 — 130V, 0.5A                                                                       |
| Digital<br>input  | X2            |                  | 5P      | Green      | X2-3: Emergency stop                                                                                                               | Power source: AC24 — 240V/DC20 — 130V, 0.5A                                                                       |
| Input             |               |                  |         |            | X2-4: Spare                                                                                                                        | Power source: AC24 — 240V/DC20 — 130V, 0.5A                                                                       |
|                   |               |                  |         |            | X2-5: Common                                                                                                                       | Common terminal                                                                                                   |
| Analog output     | Х6            |                  | 2P      | Green      | Analog output:0-10V                                                                                                                | Maximum tolerable load 1kΩ (10mA)                                                                                 |
|                   | X4a           | X4a 2P<br>X4b 2P |         |            | Outdoor unit, interface error                                                                                                      | No voltage, a-contact output                                                                                      |
|                   | X4b           |                  |         |            | Compressor ON                                                                                                                      | No voltage, a-contact output                                                                                      |
|                   | Digital       |                  |         | Defrost ON | No voltage, a-contact output                                                                                                       |                                                                                                                   |
| Digital<br>output |               |                  | 2P      | Green      | [SW8-1:ON] Cooling/Heating (Fixed) [SW8-1:OFF] Function selectable via Modbus; ① Run/Stop [Initial] ② Cooling/heating ③ Fan ON/OFF | No voltage, a-contact output X4d can be selected with Modbus communication.(SW8-1:OFF) or SW8-1 ON:Coolin/Heating |
|                   | LED           | 1                |         | Green      | Normal                                                                                                                             |                                                                                                                   |
|                   | LED           | 2                |         | Red        | Error                                                                                                                              |                                                                                                                   |
|                   | X1            |                  | 2P      | Green      | Remote control                                                                                                                     | Remote control can be connected to SC-ADNA-E.                                                                     |
|                   | X5            |                  | 3P      | Green      | Modbus                                                                                                                             | RS-485 communication circuit                                                                                      |
|                   |               | 1                | 0.0     |            |                                                                                                                                    |                                                                                                                   |
|                   | 2             |                  | 2P      |            | Cascade                                                                                                                            | Cascade control connector                                                                                         |
| X7                |               | X7 3             |         | Green      |                                                                                                                                    |                                                                                                                   |
| ln-/              |               | 4                | 2P      |            | Cascade spare                                                                                                                      | Spare cascade control connector                                                                                   |
| output            |               | 1                |         |            | X0-1: Function earth                                                                                                               |                                                                                                                   |
|                   |               | 2                |         |            | X0-2: Open port                                                                                                                    | For reinforced insulation                                                                                         |
|                   | X0            | 3                | 5P      | Green      | X0-3: Power, L                                                                                                                     | AC 220 - 240 V                                                                                                    |
|                   |               | 4                | UP .    | GIEEN      | X0-4: Power, N                                                                                                                     | AC 220 - 240 V                                                                                                    |
|                   |               | 5                |         |            | X0-5: Communication terminal                                                                                                       |                                                                                                                   |

#### (3) Analog input circuit: X3 connector (only Master Unit)

Compressor speed can be controlled with analog input signal (0 – 10V/4 – 20mA).

AHU Interface converts 0 - 10V/4 - 20mA signals within the rage of 0 - 100% to grasp the capacity necessary for AHU System.

If the outdoor unit uses 100% of necessary capacity, it operates at the maximum speed of outdoor unit.

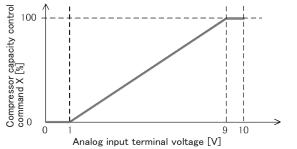
To use the analog input function, set the DIP switch SW7-4 to "OFF" to enable the capacity control.

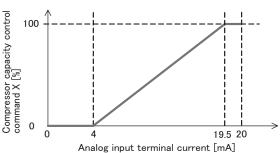
## 1) 0 - 10V capacity control (SW7-1: OFF and JX2: 1-2 Short)

0 – 10V signals are converted to 0 – 100% necessary capacity.

Take note that there is an insensitive zone (dead band) in certain range.

Example) If 0.5V is input, the necessary capacity becomes 0%.


#### 2) 4 - 20mA capacity control (SW7-1: ON and JX2: 2-3 Short)


4 – 20mA signals are converted to the necessary capacity of 0 – 100%.

Take note that there is an insensitive zone (dead band) in certain range.

Example) If 0.7V is input, the necessary capacity becomes 0%

It controls necessary capacity of outdoor unit with Analog input signal: 0 - 10 [V]/4 - 20 [mA] in the following range.





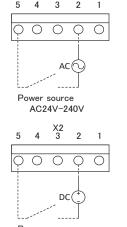
Capacity control command X [%] x Analog input conversion table

| Capacity control command [%] | 0   | 10  | 20  | 30  | 40   | 50   | 60   | 70   | 80   | 90   | 100  |
|------------------------------|-----|-----|-----|-----|------|------|------|------|------|------|------|
| Analog input voltage [V]     | 1.0 | 1.8 | 2.6 | 3.4 | 4.2  | 5.0  | 5.8  | 6.6  | 7.4  | 8.2  | 9.0  |
| Analog input current [mA]    | 4.0 | 4.8 | 7.1 | 8.6 | 10.2 | 11.8 | 13.3 | 14.9 | 16.4 | 18.0 | 19.5 |

#### (4) Digital input circuit: X2 connector (only Master Unit)

- ON/OFF can be recognized with the change edge of voltage input in the digital input terminal: X2.
- Digital input terminal: X2-5 is Common terminal.

To use X2-1 - X2-4, wire it as a set with X2-5.

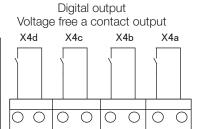

• Functions of digital input terminals are as follows.

Digital input terminal function list

| Terminal | Function        | ON (Shorted)   | OFF (OPEN)             |  |  |  |
|----------|-----------------|----------------|------------------------|--|--|--|
| X2-1     | Run/Stop        | Run            | Stop                   |  |  |  |
| X2-2     | Cooling/Heating | Heating        | Cooling                |  |  |  |
| X2-3     | Emergency stop  | Emergency stop | Emergency stop release |  |  |  |
| X2-4     | Reserve         | -              | -                      |  |  |  |
| X2-5     | Common          |                |                        |  |  |  |

- When operations compete with that of remote control or Modbus after switching Run/Stop or heating/cooling, latter operation takes the priority.
- When the emergency stop is overlapped with inputs from Modbus, it cannot reset unless both of them are turned OFF.

Digital input: Example X2-2




#### (5) Digital output circuit: X4 connector

- Digital output terminal outputs ON/OFF status with voltage.
- Functions of each digital terminal are as follows.

#### 1) X4a-X4d

| Terminal | Function                     | ON (Shorted)  | OFF (OPEN)     |  |
|----------|------------------------------|---------------|----------------|--|
| X4a      | Outdoor Unit/Interface error | Error         | Normal         |  |
| X4b      | Compressor ON                | Compressor ON | Compressor OFF |  |
| X4c      | Defrost ON                   | Defrost ON    | Defrost OFF    |  |
| X4d      | Function selectable*         | Run           | Stop           |  |



\* X4d can be changed with SW8-1 and Modbus communiscation.

| SW8-1 | Digital Output : X4d  |         |         |  |  |
|-------|-----------------------|---------|---------|--|--|
|       | Function              | ON      | OFF     |  |  |
| ON    | Operation mode output | Heating | Cooling |  |  |
|       | Modbus communication* |         |         |  |  |
| OFF   | ①Run/Stop             | Run     | Stop    |  |  |
|       | ②Operation mode       | Heating | Cooling |  |  |
|       | 3Fan ON/OFF           | Fan ON  | Fan OFF |  |  |

\*Initial: ①Run/Stop

[Digital Output of Master unit]

All slave units are the subjects to Master's signal output X4 (from a to d).

If either master or slave meets the required output condition, the signal X4 will be sent out ("OR" condition).

[Digital Output of Slave unit]

Digital output of Slave unit are separately outputted according to its system's status.

<Delay time setting for Fan On/Off output > (only valid for Master Unit)

This control can be used only when you select "Fan ON/OFF" as X4d setting.

According to the delay time configured by Modbus communication, the fan output will be kept "ON" even after stopping a Cooling/ Heating operation.

The fan output will be also kept "ON" in the case when an emergency stop enters while the unit's operation is stopping.

· It can be set by Modbus Communication.

## Emergency stop

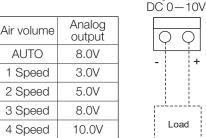
|         | 0         | 1         | 2          | 3        |
|---------|-----------|-----------|------------|----------|
| Cooling | Invalid   | 5 minutes | 15 minutes | 48 hours |
| Heating | Invalid   | 5 minutes | 15 minutes | 48 hours |
|         | [Initial] |           |            |          |

System stop

|         | 0       | 1          | 2          | 3       |
|---------|---------|------------|------------|---------|
| Cooling | Invalid | 30 minutes | 60 minutes | 6 hours |
| Heating | Invalid | 30 minutes | 60 minutes | 6 hours |

[Initial] (Initial)

### 2) LED output



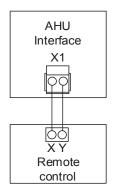

- Normal/error status of the system can be confirmed with LED output.
- LED1 (G): Flickers at 0.5 sec cycle normally.
- LED2 (R): Flicker if any error occurs. (Normally OFF) For details, refer to 6. Error display

## (6) Analog output circuit: X6 connector (only Master Unit)

- The analog output terminal output 0-10V status.
- · Output by setting the air volume from the remote control during system operation.
- Any voltage can be set 0—10V by Modbus communication (In increments of 0.1V).
- The analog output is 0V during the system is stop.

## Analog output:X6




#### (7) In-/output circuits

· There are following input functions.

| Item             | Connector |    | Housing        | Function                         |  |
|------------------|-----------|----|----------------|----------------------------------|--|
| X1<br>X5         |           | 2P | Remote control |                                  |  |
|                  |           | 5  | 3P             | Modbus (RS-485)                  |  |
| Input/<br>Output | X7        | -1 | - 2P           | Cascade control                  |  |
|                  |           | -2 |                |                                  |  |
|                  |           | -3 | 2P             | Cascade control<br>(Reserve)     |  |
|                  |           | -4 | 2F             |                                  |  |
|                  | XO        |    | 5P             | Power<br>(X0-2 is an empty port) |  |

#### 1) Remote control communication circuit (only Master Unit)

- X1 connector: Remote control communication terminal (There is no polarity.)
- · Remote control can be installed if necessary.
- When connecting the remote control, connect it to Master (SW1 = 0).



X1 connector is effective at Master setting (SW1: Address 0) only.

#### 2) Modbus communication circuit (RS-485) (only Master Unit)

- X5 connector: Modbus communication circuit terminal
- Also when connecting Modbus communication, connect it to Master.

| X5-1                  | A polor                                 |
|-----------------------|-----------------------------------------|
| X5-2                  | B polor                                 |
| X5-3                  | GND                                     |
| JX-1<br>(Termination) | 1-2:Not available<br>2-3:Available 100Ω |

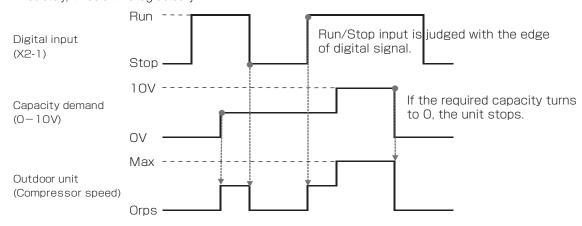
X5 connector is effective at Master setting (SW1: Address 0) only.

#### 3) Cascade communication circuit

- X7 connector: Cascade connection circuit terminal
- This is not used on single refrigerant line systems.

#### 2.3 Basic control

#### (1) Operation stop command to AHU system

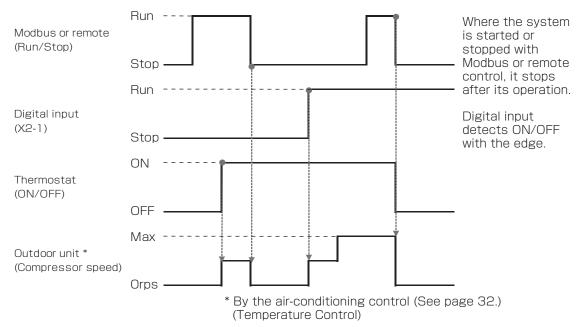

Run/Stop means to the system vary depending on the setting of SW7-4. Either one of Run/Stop means must be provided.

#### 1) Capacity Control (SW7-4: OFF)

AHU system How to Run/Stop Digital input or Modbus (\*1)

- (\*1) Select either of the following ways to Run/Stop the AHU system:
- Digital input (Run/Stop)
- Modbus command (Run/Stop)

Samples of system Run/Stop are as shown below. Although the compressor speed is shown as if it adapts immediately, it has a time lag actually.




#### 2) Temperature Control (SW7-4: ON)

AHU system How to Run/Stop Digital input, RC or Modbus(\*2) (\*2) Select one of the following ways to Run/Stop the AHU system:

- Digital input (Run/Stop)
- Modbus command (Run/Stop)
- Remote control command (Run/Stop)

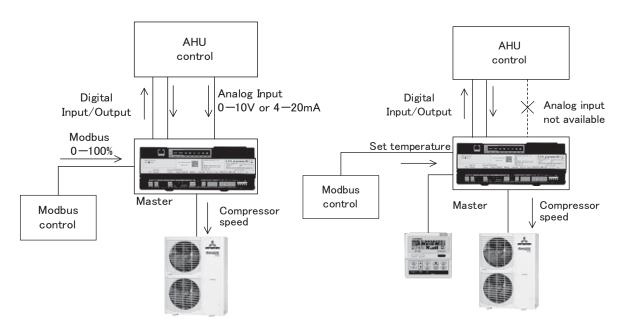
Samples of system Run/Stop are as shown below. Although the compressor Speed is shown as if it adapts immediately, it has a time lag actually.



#### (2) Operation mode selection

AHU Interface allows selecting two operation modes.

- Cooling mode
- Heating mode


Operation mode can be changed in three ways.

- Operation mode switching by external input
- Operation mode switching by remote control operation
- Operation mode switching with Modbus communication

#### (3) Outdoor unit control means selection

Outdoor unit control means can be changed with SW7-4.

- Capacity ControlSW7-4OFF
- Temperature Control SW7-4 ON



Example of Capacity Control: SW7-4 OFF system

Example of Temperature Control: SW7-4 ON system

#### (3-1) Capacity Control

Required capacity can be commanded to the outdoor system as follows.

- 1) Command from Analog input Refer to 2.2 (3) Analog input circuit.
- 2) Command from Modbus Modbus communication allows transmitting the capacity command signal of 0 100% in the unit of 0.01%.

See 4. Modbus communication.

## (Caution)

When commands from Analog input and Modbus compete each other, command from Modbus takes the priority, invalidating that of Analog input.

#### (3-2) Temperature Control

Temperatures are set from the remote control or Modbus. It control the outdoor unit with the difference with the suction temperature sensor.

Setting temperatures are determined as follows.

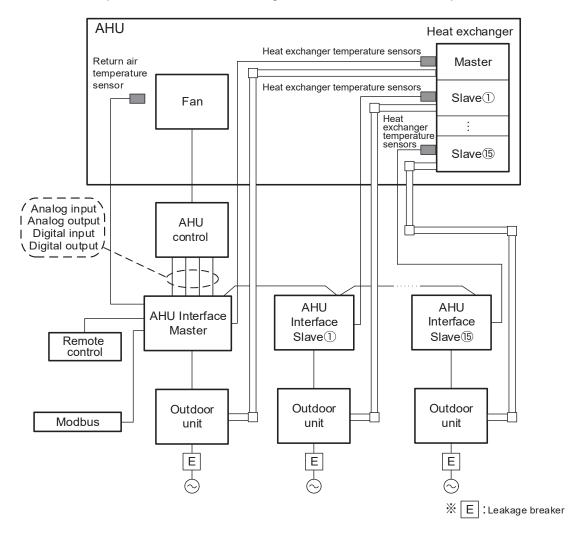
- 1) From the remote control Refer to the instruction manual of remote control.
- 2) From Modbus Refer to 4. Modbus communication.
  When the temperature setting from remote control completes with that from Modbus, the latter takes the priority.

In the air-conditioning control, amount of increase or decrease in the compressor speed is determined by the size of difference E between the temperature setting Ts and suction temperature Ta.

In Modbus communication, Gain can be multiplied to this amount of increase or decrease in compressor speed: Af.

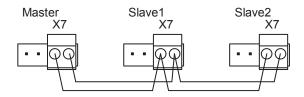
Initial value of Gain is 0.5. Amount of increase or decrease in  $\Delta f$  can be adjusted in the range of 0.1 – 10 by changing the setting of Gain.

Cooling: E = Ta - TsHeating: E = Ts - Ta


Table: Increase/decrease in compressor speed  $\Delta f$  relative to temperature difference E

| Е     | ⊿ f | Е     | ⊿f  | Е    | ⊿f | Е    | ⊿f |
|-------|-----|-------|-----|------|----|------|----|
| -8.00 | -30 | -3.75 | -12 | 0.25 | 0  | 4.25 | 18 |
| -7.75 | -28 | -3.50 | -12 | 0.50 | 0  | 4.50 | 18 |
| -7.50 | -28 | -3.25 | -10 | 0.75 | 2  | 4.75 | 20 |
| -7.25 | -26 | -3.00 | -10 | 1.00 | 2  | 5.00 | 20 |
| -7.00 | -26 | -2.75 | -8  | 1.25 | 4  | 5.25 | 22 |
| -6.75 | -24 | -2.50 | -8  | 1.50 | 4  | 5.50 | 22 |
| -6.50 | -24 | -2.25 | -8  | 1.75 | 4  | 5.75 | 24 |
| -6.25 | -22 | -2.00 | -6  | 2.00 | 6  | 6.00 | 24 |
| -6.00 | -22 | -1.75 | -6  | 2.25 | 6  | 6.25 | 24 |
| -5.75 | -20 | -1.50 | -6  | 2.50 | 8  | 6.50 | 26 |
| -5.50 | -20 | -1.25 | -4  | 2.75 | 8  | 6.75 | 26 |
| -5.25 | -18 | -1.00 | -4  | 3.00 | 10 | 7.00 | 26 |
| -5.00 | -18 | -0.75 | -4  | 3.25 | 10 | 7.25 | 28 |
| -4.75 | -16 | -0.50 | -2  | 3.50 | 12 | 7.50 | 28 |
| -4.50 | -16 | -0.25 | 0   | 3.75 | 14 | 7.75 | 28 |
| -4.25 | -14 | 0.00  | 0   | 4.00 | 16 | 8.00 | 30 |
| -4.00 | -14 | ·     |     | ·    |    | ·    | ·  |

## 3. Multiple refrigerant line system: Cascade control

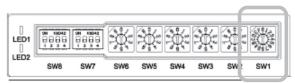

## 3.1 Cascade control - Outline

● This is a system in which two or more refrigerant lines are used in one AHU system.



#### Connecting method

- · X7 connector allows connecting and controlling multiple units of AHU Interface and outdoor unit.
- · Only one outdoor unit can be connected to AHU Interface.
- Example of connection for each Interface for the cascade control is as shown below.




## 3.2 Difference of specifications/setting with cascade control single refrigerant system

#### (1) Input switch in cascade control

Switches are same as in the single refrigerant line. Check 2.2.

#### (a) Address setting: SW1



- · It is necessary to set Master for one unit of AHU Interface. Make sure to set SW1 (Address) of Master at 0.
- · Master setting (SW1=0 setting) is on one unit only.
- · Any of 1 F can be set for the Slave address, if it is other than 0. Addresses cannot be duplicated.
- · Master judges the number of connected units automatically.
- · Slave unit can be added on the way.

#### (b) Sensor connection

- · Make sure to connect attached suction air temperature sensor and heat exchanger temperature sensor.
- · Connect the suction air temperature sensor to CNH connecter. Connect the heat exchanger temperature sensor to CNN connector.
- $\cdot$  Connect the suction temperature senor to Master. This is not necessary for Slave.
- · Make sure to connect the heat exchanger temperature sensor to each of Master/Slave of Interface.
- · When connecting each temperature sensor, take care to connect it to correct position.

  If heat exchanger temperature sensors (Thi-R1 Thi-R3) are misconnected such that those connected to Interfaces of Master and Slave are installed in respective heat exchanger, the protection control cannot function correctly, resulting in trouble or error. (Refer to page 8 and pages 17 22).

#### (2) Master/Slave in-/output functions in cascade control

In-/output functions are controlled by Master unit. Connect all in-/output circuits, other than the temperature sensor, to Master.

Slave unit does not communicate either with the remote control nor Modbus.

Master unit outputs its own status (information) and that of Slave externally.

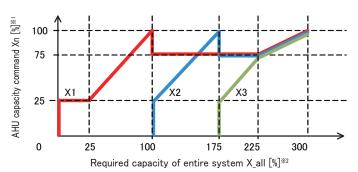
Master unit controls commands to Slave unit.

It is not necessary to connect external in-/output, other than sensor and cascade connection wires and Digital output, to Slave unit.

Slave unit needs connections to outdoor unit (X0 connector), heat exchanger temperature sensor (CNN connector) and cascade signal wire (X7 connector).

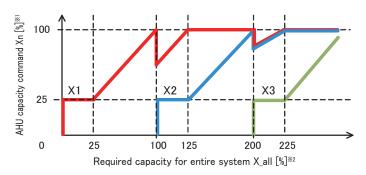
Although Digital output of Slave unit is effective, its connection is option.

#### 3.3 Basic control


- · AHU Interface master controls all Slaves.
- · All of Run/Stop, operation mode and thermostat ON/OFF are judged by Master.
- · Rotation control and fault backup control are enabled automatically.

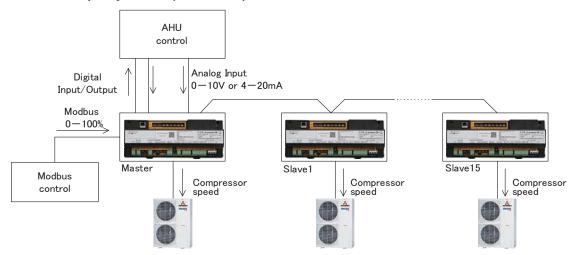
#### (1) Capacity distribution control in multiple unit connection

- AHU Interface Master calculates the required capacity from AHU system according to the number of connected outdoor units.
- It calculates necessary capacity for entire system: X\_all [%] from the require capacity from AHU system: X = 0 100% and the number of connected units.
- Based on the result of X\_all [%], Master commands the distributed required capacity Xn [%] to Slave, and control the number of operating units.


#### • Optimum compressor speed control [Initial: Valid]

- · Restriction applies to the upper limit of compressor speed.
- · The upper limit of compressor speed is restricted at 75%.
- $\cdot$  Values of the upper limit of compressor speed can be changed with Modbus. (Initial value: 75%. Range: 40 90%.)
- · This control can be changed to Valid/Invalid with Modbus.
- · Image of these is as illustrated below.

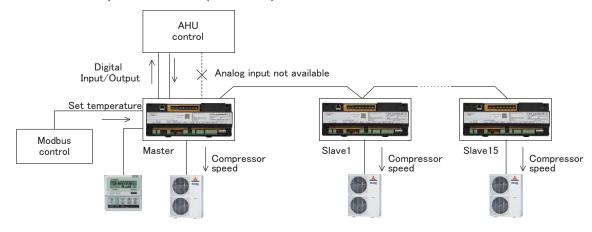



## Optimum compressor speed control [Invalid]

· Restriction does not apply to the upper limit of compressor speed.



- X1 The master commands each slave.
- X2 The master calculates X\_all from the following:
  - $\cdot$  Analog input or Modbus or remote control (0–10V/4–20mA, 0–100%, set temperature)
  - · Number of outdoor units


#### < Cascade control: Capacity Control (SW7-4: OFF)>

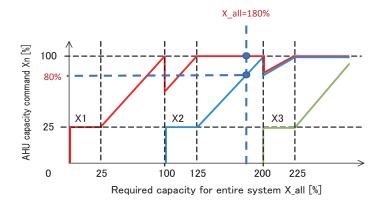


Capacity Control under Cascade Control (SW7-4 OFF): Example system

- It calculates necessary capacity for entire system: X\_all [%] from the value of required capacity from AHU system: X
- X\_all [%] = Required capacity X [%] x Number of units connected in the system [Unit]

#### < Cascade control: Temperature Control (SW7-4: ON)>




Temperature Control under cascade control (SW7-4 ON): Example system

- AHU Interface Master controls the air-conditioning based on the difference between setting temperature and return air temperature sensor, and calculate the required speed to compressor. For the amount of increase or decrease in compressor speed based on the temperature difference, refer to page 32.
- Master calculates the necessary capacity for entire system: X\_all from the rate of required speed and maximum outdoor unit speed.
- · X\_all [%] = (Required speed ÷ Max. outdoor unit speed) × Number of units connected in system [Unit]

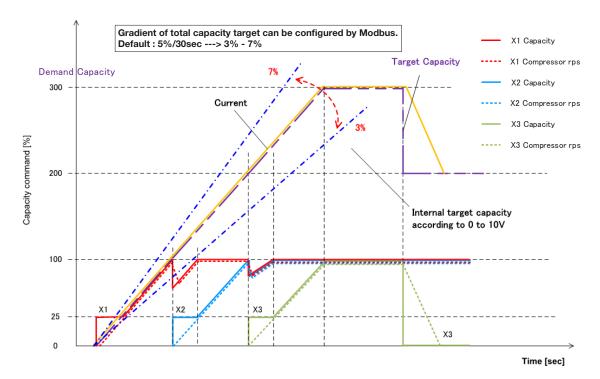
- It calculates the command value transmitted to each outdoor unit in the system: Xn [%] from the necessary capacity for entire system: X\_all [%].
- ${\boldsymbol \cdot}$  AHU Interface Master commands Xn [%] to AHU Interface Slave.
- Each AHU Interface commands Compressor speed to outdoor unit.

# Compressor speed [rps] = Max. outdoor unit speed [rps] × Xn [%]

X\_all: Example of the capacity distribution at 180% is illustrated below.



(Ex.) When 3 units are connected and X\_all = 180%:


X1 outdoor unit: 100% operation X2 outdoor unit: 80% operation

X3 outdoor unit: 0% (Stop)

(Optimum compressor speed control: Invalid)

### <Capacity step up control (SW8-2: ON)>

- When a demand capacity is received from AHU control, this control operates outdoor units step by step or one after another, instead of operating all units simultaneously.
- · Although it takes time to raise the speed to the demand capacity, it allows to raise it gradually.
- Use this control in the event that a hunting occurs on PID control at AHU control side because multiple outdoor units are operated simultaneously after receiving a high demand capacity input suddenly.

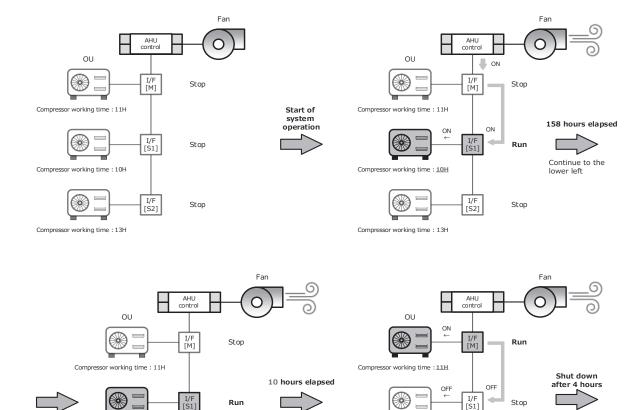


Example of Capacity step up control (Outdoor unit: 3 units) (Optimum compressor speed control: Invalid)

Continue to the lower left

Stop

#### (2) Rotation control

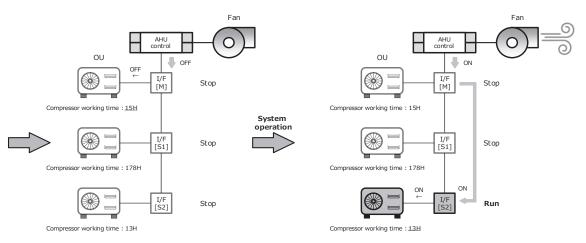

In order to keep the compressor operation time of each unit in the system at a constant level, AHU Interface (Master) controls such that the unit, of which the compressor operation time is the shortest, is operated preferentially.

- · This control is enabled automatically.
- $\boldsymbol{\cdot}$  Outdoor unit operation is switched at every 168H from the start of operation.
  - Operation switching time is rotation selecting time can be changed with Modbus. [1 364H].

An example of rotation control is shown below.

Compressor working time: 168H

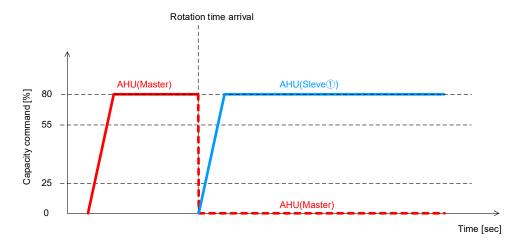
Compressor working time: 13H



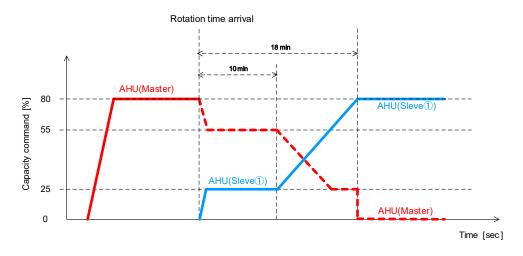

168H has elapsed after

Stop

working time : 178H


Compressor working time: 13H




Rotation control example

### (2-1) Rotation control\_Constant capacity control [Initial: Invalid]

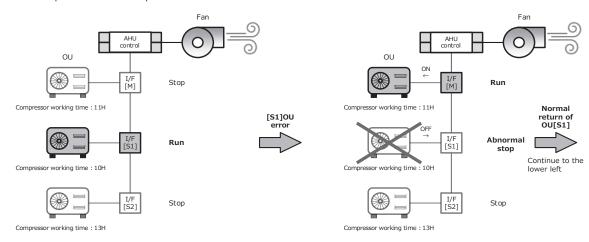
- · When the rotation control is selected and constant capacity control is set to "invalid", the capacity command is controlled as figure (a).
- · To minimize a capacity drop, the constant capacity control can be set to "valid". And then the capacity command is controlled as figure (b).
- · Modbus allows selecting Valid/Invalid for this control. Initial value: Invalid.
- · Image of these is as illustrated below.

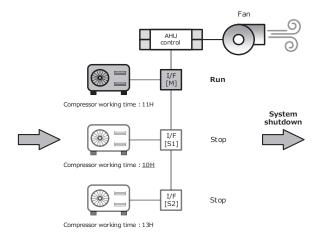


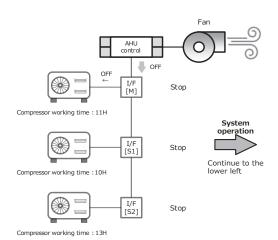
(a) Rotation control constant capacity control:Invalid



(b) Rotation control\_constant capacity control:Valid


#### (3) Fault backup control


If any operating outdoor unit is stopped by the error stop, AHU Interface (Master) starts the backup operation of other normal outdoor units.

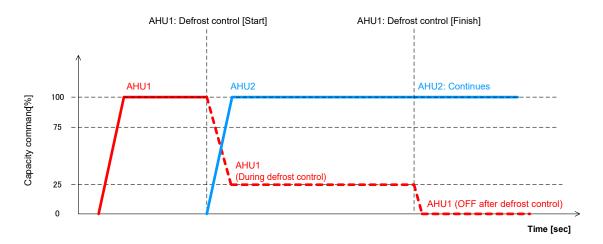

- · This control is enabled automatically.
- · Even if the unit stopped by error has been restored from the error, operation of the outdoor unit is not switched.


It stands by till next operation in the rotation control.

An example of fault backup control is shown below.










Fault backup control example

# (4) Defrost control\_Constant capacity control [Initial: Invalid]

- · This control is designed to restrain the temporary capacity drop during defrost control.
- · No sooner than an outdoor unit enters the defrost operation, another outdoor unit starts to run instead.
- · Modbus allows selecting Valid/Invalid of this control.



Defrost control\_Constant capacity control

# 4. Modbus communication

# 4.1 Communication specifications

X5 connector enables Modbus communication. (Modbus communication is effective on Master only.)

Monitoring of AHU Interface and outdoor unit and some of setting contents for AHU Interface can be changed.

Modbus communication specifications are as follows.

| Item                           | Specification                                                                | Note                                           |
|--------------------------------|------------------------------------------------------------------------------|------------------------------------------------|
| Transmission mode              | RTU (Remote Terminal Unit)                                                   |                                                |
| Transmission speed             | (1) 19200bps (Initial)                                                       | SW7-2: OFF                                     |
| Transmission speed             | (2) 9600bps                                                                  | SW7-2: ON                                      |
| Data bit                       | 8                                                                            |                                                |
| Darity/Stan hit                | (1) Even parity + 1 Stop bit (Initial)                                       | SW7-3: OFF                                     |
| Parity/Stop bit                | (2) Non parity + 2 Stop bits                                                 | SW7-3: ON                                      |
| Node number<br>(Slave address) | 01-99(Initial: 01)                                                           | SW5 : Ones<br>SW6 : Tens                       |
| Connection                     | RS-485 communication                                                         | X5-1 : A polar<br>X5-2 : B polar<br>X5-3 : GND |
| Combinations                   | Modbus Master: External control: 1unit<br>Modbus Slave: AHU Interface: 1unit |                                                |

# 4.2 Function

Modbus function: Function codes are as follows.

|    | Code Function name |                           | Remark                                                     |
|----|--------------------|---------------------------|------------------------------------------------------------|
| 3  | (0×03)             | Read holding register     | Read the contents of the hold register                     |
| 4  | (0×04)             | Read input register       | Read the contents of the input register                    |
| 6  | (0×06)             | Preset single register    | Change the contents of the hold register                   |
| 16 | (0×10)             | Preset multiple registers | Change the contents of multiple consecutive hold registers |

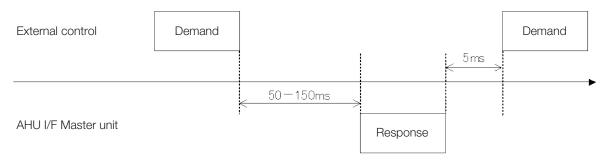
# 4.3 Data information

Kind of Modus data, data length and address assignment range are as shown below.

| Target register  | Data length | Type of Access       | Register address range | Register number range |
|------------------|-------------|----------------------|------------------------|-----------------------|
| Input register   | 2 byte      | Monitoring only      | 0-9998                 | 30001-39999           |
| Holding register | 2 byte      | Monitoring / control | 0-9998                 | 40001-49999           |

# 4.4 Exception response

In the case query message has a problem, this interface will reply exception response.


The function code of exception response is added 0x80 to original function code to inform this response is exception response.

And the exception response includes exception code which shows reason of the problem.

| Exception code | Name                 | Meaning                                                              |
|----------------|----------------------|----------------------------------------------------------------------|
| 0x01           | Illegal function     | The function code received in the query is not an allowable action.  |
| 0x02           | Illegal data address | The data address received in the query is not an allowable address.  |
| 0x03           | Illegal data value   | A value contained in the query data field is not an allowable value. |

# 4.5 Communication - Outline

Intervals between Modbus operating device and AHU-KIT-SP2 are as specified below.



 $\cdot$  Data length of demand frame is as shown below.

| Field       | Detail          | Data length |
|-------------|-----------------|-------------|
| Address     | Slave address   | 8 bit       |
| Function    | Function code   | 8 bit       |
| Data        | Request data    | Variable    |
| Error check | CRC error check | 16 bit      |

 $\cdot$  Data length of response frame is as shown below.

| Field       | Detail          | Data length |
|-------------|-----------------|-------------|
| Address     | Slave address   | 8 bit       |
| Function    | Function code   | 8 bit       |
| Data        | Request data    | Variable    |
| Error check | CRC error check | 16 bit      |

# 4.6 Input register

[Query]

The query message specifies the start address of the register and the number of registers.

The register addressed starting at zero. For example, register number "30001" must be requested by sending an address of "0".

• The following table shows the input registers (read only, 2-byte data).

| Register<br>Address | Register Number<br>(For reference) | ltem                                | Initial  | Range          | Unit         | Note                                                                                              |
|---------------------|------------------------------------|-------------------------------------|----------|----------------|--------------|---------------------------------------------------------------------------------------------------|
| 0                   | 30001                              | System Run/Stop display             | 0        | 0 - 65535      | -            | 0 : Stop<br>1 : Run                                                                               |
| 1                   | 30002                              | Operation mode display              | 0        | 0 - 65535      | -            | 0 : Cooling<br>1 : Heating                                                                        |
| 2                   | 30003                              | Set temperature display             | 46(23°C) | 0 - 65535      | 0.5°C/count  | 16—30℃                                                                                            |
| 3                   | 30004                              | Center/Remote display               | 1        | 0 - 65535      | -            | 0 : Remote<br>1 : Center/Remote<br>2 : Center<br>3 : Center2<br>4 : Remote2<br>5 : Center/Remote2 |
| 4                   | 30005                              | Temperature Control<br>Gain display | 0.5      | 0 - 65535      | _            | Compressor rps<br>Asjustment Gain : 0.1 - 10                                                      |
| 5                   | 30006                              | Emergency stop display              | 0        | 0 - 65535      | -            | 0 : Emergency stop release<br>1 : Emergency stop                                                  |
| 6                   | 30007                              | Return air temperature (Master)     | 0        | -32768 – 32767 | 0.1°C/count  |                                                                                                   |
| 7                   | 30008                              | External temperature (Master)       | -64      | -32768 – 32767 | 0.1°C/count  |                                                                                                   |
| 8                   | 30009                              | Request capacity                    | 0        | 0 - 65535      | 1 %/count    | X_all                                                                                             |
| 9                   | 30010                              | Analog input voltage [V]            | 0        | 0 - 65535      | 0.1 V/count  | 0 – 10V                                                                                           |
| 10                  | 30011                              | Analog input current [mA]           | 0        | 0 - 65535      | 0.1 mA/count | 0 – 20mA                                                                                          |
| 11                  | 30012                              | Digital input X2-1                  | 0        | 0 - 65535      | _            | 0:OFF 1:ON                                                                                        |
| 12                  | 30013                              | Digital input X2-2                  | 0        | 0 - 65535      | _            | 0:OFF 1:ON                                                                                        |
| 13                  | 30014                              | Digital input X2-3                  | 0        | 0 - 65535      | _            | 0:OFF 1:ON                                                                                        |
| 14                  | 30015                              | Digital input X2-4                  | 0        | 0 - 65535      | _            | 0:OFF 1:ON                                                                                        |
| 15                  | 30016                              | Digital output X4a                  | 0        | 0 - 65535      | _            | 0:OFF 1:ON                                                                                        |
| 16                  | 30017                              | Digital output X4b                  | 0        | 0 - 65535      | _            | 0:OFF 1:ON                                                                                        |
| 17                  | 30018                              | Digital output X4c                  | 0        | 0 - 65535      | _            | 0:OFF 1:ON                                                                                        |
| 18                  | 30019                              | Digital output X4d                  | 0        | 0 - 65535      | _            | 0:OFF 1:ON                                                                                        |
| 19                  | 30020                              | Analog input switching              | 0        | 0 - 65535      | -            | 0:0-10V<br>1:4-20mA                                                                               |
| 20                  | 30021                              | Modbus baudrate setting             | 0        | 0 - 65535      | _            | 0:19200bps<br>1:9600bps                                                                           |
| 21                  | 30022                              | Modbus<br>Parity/Stop bit setting   | 0        | 0 - 65535      | -            | 0 : Even parity<br>+1Stop bit<br>1 : Non parity<br>+2Stop bit                                     |
| 22                  | 30023                              | Compressor Control                  | 0        | 0 - 65535      | _            | 0 : Capacity Control 1 : Temperature Control                                                      |
| 23                  | 30024                              | Reserve                             | 0        | 0 - 65535      | -            |                                                                                                   |
| 24                  | 30025                              | Capacity step up control setting    | 0        | 0 - 65535      | _            | 0 : Invalid<br>1 : Valid                                                                          |
| 25                  | 30026                              | SW8-3 Setting display               | 0        | 0 - 65535      | _            | 0                                                                                                 |
| 26                  | 30027                              | Reserve                             | 0        | 0 - 65535      | -            | Reserve                                                                                           |
| 27                  | 30028                              | SW7-1 Reading value                 | 0        | 0 - 65535      | -            | 0:OFF 1:ON                                                                                        |
| 28                  | 30029                              | SW7-2 Reading value                 | 0        | 0 - 65535      | -            | 0:OFF 1:ON                                                                                        |
| 29                  | 30030                              | SW7-3 Reading value                 | 0        | 0 - 65535      | -            | 0:OFF 1:ON                                                                                        |
| 30                  | 30031                              | SW7-4 Reading value                 | 0        | 0 - 65535      | -            | 0:OFF 1:ON                                                                                        |

| Register<br>Address | Register Number<br>(For reference) | Item                                                                              | Initial | Range          | Unit        | Note                                                        |
|---------------------|------------------------------------|-----------------------------------------------------------------------------------|---------|----------------|-------------|-------------------------------------------------------------|
| 31                  | 30032                              | SW8-1 Reading value                                                               | 0       | 0 - 65535      | -           | 0:OFF 1:ON                                                  |
| 32                  | 30033                              | SW8-2 Reading value                                                               | 0       | 0 - 65535      | -           | 0:OFF 1:ON                                                  |
| 33                  | 30034                              | SW8-3 Reading value                                                               | 0       | 0 - 65535      | -           | 0:OFF 1:ON                                                  |
| 34                  | 30035                              | SW8-4 Reading value                                                               | 0       | 0 - 65535      | -           | 0:OFF 1:ON                                                  |
| 35                  | 30036                              | Modbus capacity control command display                                           | 0       | 0 - 65535      | -           | 0 : No command 1 : Command                                  |
| 36                  | 30037                              | Modbus capacity control value display                                             | 0       | 0 - 65535      | 0.01%/count | 0 – 100%                                                    |
| 37                  | 30038                              | Capacity step up control – Step-up rate display                                   | 50      | 30 - 70        | 0.1%/count  | 3 – 7%                                                      |
| 38                  | 30039                              | Silent mode                                                                       | 0       | 0 - 65535      | -           | 0 : OFF<br>1 : ON                                           |
| 39                  | 30040                              | Analog output                                                                     | 0       | 0 - 65535      | 0.1V/count  | 0-10V                                                       |
| 40                  | 30041                              | Supply air temperature (Master)                                                   | _       | -32768 - 32767 | 0.1°C/count |                                                             |
| 41                  | 30042                              | Optimum compressor speed control                                                  | 1       | 0 - 65535      | -           | 0 : Invalid<br>1 : Valid                                    |
| 42                  | 30043                              | Optimum compressor speed setting                                                  | 75      | 0 - 65535      | 0.1 %/count | 40-90%                                                      |
| 43                  | 30044                              | Rotation control - Constant capacity control                                      | 0       | 0 - 65535      | -           | 0 : Invalid<br>1 : Valid                                    |
| 44                  | 30045                              | Defrost control - Constant capacity control                                       | 0       | 0 - 65535      | -           | 0 : Invalid<br>1 : Valid                                    |
| 45                  | 30046                              | Rotation hour                                                                     | 168     | 0 - 65535      | 1 H/count   | 1-364 hours                                                 |
| 46                  | 30047                              | System stop -<br>Delay time setting for Fan ON/<br>OFF output (in a cooling mode) | 0       | 0 - 65535      | -           | 0 : Invalid<br>1 : Setting1<br>2 : Setting2<br>3 : Setting3 |
| 47                  | 30048                              | System stop -<br>Delay time setting for Fan ON/<br>OFF output (in a heating mode) | 0       | 0 - 65535      | -           | 0 : Invalid<br>1 : Setting1<br>2 : Setting2<br>3 : Setting3 |
| 48                  | 30049                              | Emergency stop -<br>Fan ON/OFF setting (in a cooling<br>mode)                     | 0       | 0 - 65535      | -           | 0 : Invalid<br>1 : Setting1<br>2 : Setting2<br>3 : Setting3 |
| 49                  | 30050                              | Emergency stop -<br>Fan ON/OFF setting (in a heating<br>mode)                     | 0       | 0 - 65535      | -           | 0 : Invalid<br>1 : Setting1<br>2 : Setting2<br>3 : Setting3 |
| 1000                | 31001                              | Connection status : Slave1                                                        | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |
| 1001                | 31002                              | Connection status : Slave2                                                        | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |
| 1002                | 31003                              | Connection status : Slave3                                                        | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |
| 1003                | 31004                              | Connection status : Slave4                                                        | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |
| 1004                | 31005                              | Connection status : Slave5                                                        | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |
| 1005                | 31006                              | Connection status : Slave6                                                        | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |
| 1006                | 31007                              | Connection status : Slave7                                                        | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |
| 1007                | 31008                              | Connection status : Slave8                                                        | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |
| 1008                | 31009                              | Connection status : Slave9                                                        | 0       | 0 - 65535      |             | 0 : Unconnected<br>1 : Connection                           |
| 1009                | 31010                              | Connection status : Slave10                                                       | 0       | 0 - 65535      | -           | 0 : Unconnected<br>1 : Connection                           |

| Register<br>Address | Register Number (For reference) | ltem                                  | Initial | Range     | Unit      | Note                              |
|---------------------|---------------------------------|---------------------------------------|---------|-----------|-----------|-----------------------------------|
| 1010                | 31011                           | Connection status : Slave11           | 0       | 0 - 65535 | _         | 0 : Unconnected<br>1 : Connection |
| 1011                | 31012                           | Connection status : Slave12           | 0       | 0 - 65535 | -         | 0 : Unconnected<br>1 : Connection |
| 1012                | 31013                           | Connection status : Slave13           | 0       | 0 - 65535 | -         | 0 : Unconnected<br>1 : Connection |
| 1013                | 31014                           | Connection status : Slave14           | 0       | 0 - 65535 | _         | 0 : Unconnected<br>1 : Connection |
| 1014                | 31015                           | Connection status : Slave15           | 0       | 0 - 65535 | -         | 0 : Unconnected<br>1 : Connection |
| 1015                | 31016                           | Capacity command (Master)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1016                | 31017                           | Capacity command (Slave1)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1017                | 31018                           | Capacity command (Slave2)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1018                | 31019                           | Capacity command (Slave3)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1019                | 31020                           | Capacity command (Slave4)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1020                | 31021                           | Capacity command (Slave5)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1021                | 31022                           | Capacity command (Slave6)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1022                | 31023                           | Capacity command (Slave7)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1023                | 31024                           | Capacity command (Slave8)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1024                | 31025                           | Capacity command (Slave9)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1025                | 31026                           | Capacity command (Slaves)             | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1025                | 31020                           | Capacity command (Slave11)            | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
|                     |                                 |                                       | 0       |           |           |                                   |
| 1027                | 31028                           | Capacity command (Slave12)            |         | 0 - 65535 | 1 %/count | 0-100%                            |
| 1028                | 31029                           | Capacity command (Slave13)            | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1029                | 31030                           | Capacity command (Slave14)            | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1030                | 31031                           | Capacity command (Slave15)            | 0       | 0 - 65535 | 1 %/count | 0-100%                            |
| 1031                | 31032                           | Compressor accumulated time (Master)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1032                | 31033                           | Compressor accumulated time (Slave1)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1033                | 31034                           | Compressor accumulated time (Slave2)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1034                | 31035                           | Compressor accumulated time (Slave3)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1035                | 31036                           | Compressor accumulated time (Slave4)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1036                | 31037                           | Compressor accumulated time (Slave5)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1037                | 31038                           | Compressor accumulated time (Slave6)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1038                | 31039                           | Compressor accumulated time (Slave7)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1039                | 31040                           | Compressor accumulated time (Slave8)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1040                | 31041                           | Compressor accumulated time (Slave9)  | 0       | 0 - 65535 | 1H/count  |                                   |
| 1041                | 31042                           | Compressor accumulated time (Slave10) | 0       | 0 - 65535 | 1H/count  |                                   |
| 1042                | 31043                           | Compressor accumulated time (Slave11) | 0       | 0 - 65535 | 1H/count  |                                   |
| 1043                | 31044                           | Compressor accumulated time (Slave12) | 0       | 0 - 65535 | 1H/count  |                                   |
| 1044                | 31045                           | Compressor accumulated time (Slave13) | 0       | 0 - 65535 | 1H/count  |                                   |
| 1045                | 31046                           | Compressor accumulated time (Slave14) | 0       | 0 - 65535 | 1H/count  |                                   |
| 1046                | 31047                           | Compressor accumulated time (Slave15) | 0       | 0 - 65535 | 1H/count  |                                   |
| 1047                | 31048                           | Error code display (Master)           | 0       | 0 - 65535 | _         | 0-99                              |
| 1048                | 31049                           | Error code display (Slave1)           | 0       | 0 - 65535 | _         | 0-99                              |

| Register     | Register Number | Itana                                                     | Initial | Dongo                  | Lloit       | Noto         |
|--------------|-----------------|-----------------------------------------------------------|---------|------------------------|-------------|--------------|
| Address      | (For reference) | ltem                                                      | Initial | Range                  | Unit        | Note         |
| 1049         | 31050           | Error code display (Slave2)                               | 0       | 0 - 65535              | _           | 0-99         |
| 1050         | 31051           | Error code display (Slave3)                               | 0       | 0 - 65535              | _           | 0-99         |
| 1051         | 31052           | Error code display (Slave4)                               | 0       | 0 - 65535              | -           | 0-99         |
| 1052         | 31053           | Error code display (Slave5)                               | 0       | 0 - 65535              | -           | 0-99         |
| 1053         | 31054           | Error code display (Slave6)                               | 0       | 0 - 65535              | -           | 0-99         |
| 1054         | 31055           | Error code display (Slave7)                               | 0       | 0 - 65535              | _           | 0-99         |
| 1055         | 31056           | Error code display (Slave8)                               | 0       | 0 - 65535              | _           | 0-99         |
| 1056         | 31057           | Error code display (Slave9)                               | 0       | 0 - 65535              | -           | 0-99         |
| 1057         | 31058           | Error code display (Slave10)                              | 0       | 0 - 65535              | _           | 0-99         |
| 1058         | 31059           | Error code display (Slave11)                              | 0       | 0 - 65535              | _           | 0-99         |
| 1059         | 31060           | Error code display (Slave12)                              | 0       | 0 - 65535              | _           | 0-99         |
| 1060         | 31061           | Error code display (Slave13)                              | 0       | 0 - 65535<br>0 - 65535 | _           | 0-99         |
| 1061<br>1062 | 31062<br>31063  | Error code display (Slave14)                              | 0       | 0 - 65535              | _           | 0-99<br>0-99 |
| 1002         | 31003           | Error code display (Slave15)  Heat exchanger temperature: | 0       | 0 - 65535              | _           | 0—99         |
| 1063         | 31064           | Thi-R1(Master)                                            | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1064         | 31065           | Heat exchanger temperature:<br>Thi-R1(Slave1)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1065         | 31066           | Heat exchanger temperature:<br>Thi-R1(Slave2)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1066         | 31067           | Heat exchanger temperature:<br>Thi-R1(Slave3)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1067         | 31068           | Heat exchanger temperature:<br>Thi-R1(Slave4)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1068         | 31069           | Heat exchanger temperature:<br>Thi-R1(Slave5)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1069         | 31070           | Heat exchanger temperature:<br>Thi-R1(Slave6)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1070         | 31071           | Heat exchanger temperature:<br>Thi-R1(Slave7)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1071         | 31072           | Heat exchanger temperature:<br>Thi-R1(Slave8)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1072         | 31073           | Heat exchanger temperature:<br>Thi-R1(Slave9)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1073         | 31074           | Heat exchanger temperature:<br>Thi-R1(Slave10)            | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1074         | 31075           | Heat exchanger temperature:<br>Thi-R1(Slave11)            | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1075         | 31076           | Heat exchanger temperature:<br>Thi-R1(Slave12)            | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1076         | 31077           | Heat exchanger temperature:<br>Thi-R1(Slave13)            | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1077         | 31078           | Heat exchanger temperature:<br>Thi-R1(Slave14)            | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1078         | 31079           | Heat exchanger temperature:<br>Thi-R1(Slave15)            | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1079         | 31080           | Heat exchanger temperature:<br>Thi-R2(Master)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1080         | 31081           | Heat exchanger temperature:<br>Thi-R2(Slave1)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1081         | 31082           | Heat exchanger temperature:<br>Thi-R2(Slave2)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1082         | 31083           | Heat exchanger temperature:<br>Thi-R2(Slave3)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1083         | 31084           | Heat exchanger temperature:<br>Thi-R2(Slave4)             | -3276   | -32768 - 32767         | 0.1°C/count |              |
| 1084         | 31085           | Heat exchanger temperature:<br>Thi-R2(Slave5)             | -3276   | -32768 - 32767         | 0.1°C/count |              |

| Register<br>Address | Register Number<br>(For reference) | ltem                                           | Initial | Range          | Unit        | Note     |
|---------------------|------------------------------------|------------------------------------------------|---------|----------------|-------------|----------|
| 1085                | 31086                              | Heat exchanger temperature:<br>Thi-R2(Slave6)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1086                | 31087                              | Heat exchanger temperature:<br>Thi-R2(Slave7)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1087                | 31088                              | Heat exchanger temperature:<br>Thi-R2(Slave8)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1088                | 31089                              | Heat exchanger temperature:<br>Thi-R2(Slave9)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1089                | 31090                              | Heat exchanger temperature:<br>Thi-R2(Slave10) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1090                | 31091                              | Heat exchanger temperature:<br>Thi-R2(Slave11) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1091                | 31092                              | Heat exchanger temperature:<br>Thi-R2(Slave12) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1092                | 31093                              | Heat exchanger temperature:<br>Thi-R2(Slave13) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1093                | 31094                              | Heat exchanger temperature:<br>Thi-R2(Slave14) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1094                | 31095                              | Heat exchanger temperature:<br>Thi-R2(Slave15) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1095                | 31096                              | Heat exchanger temperature:<br>Thi-R3(Master)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1096                | 31097                              | Heat exchanger temperature:<br>Thi-R3(Slave1)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1097                | 31098                              | Heat exchanger temperature:<br>Thi-R3(Slave2)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1098                | 31099                              | Heat exchanger temperature:<br>Thi-R3(Slave3)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1099                | 31100                              | Heat exchanger temperature:<br>Thi-R3(Slave4)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1100                | 31101                              | Heat exchanger temperature:<br>Thi-R3(Slave5)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1101                | 31102                              | Heat exchanger temperature:<br>Thi-R3(Slave6)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1102                | 31103                              | Heat exchanger temperature:<br>Thi-R3(Slave7)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1103                | 31104                              | Heat exchanger temperature:<br>Thi-R3(Slave8)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1104                | 31105                              | Heat exchanger temperature:<br>Thi-R3(Slave9)  | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1105                | 31106                              | Heat exchanger temperature:<br>Thi-R3(Slave10) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1106                | 31107                              | Heat exchanger temperature:<br>Thi-R3(Slave11) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1107                | 31108                              | Heat exchanger temperature:<br>Thi-R3(Slave12) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1108                | 31109                              | Heat exchanger temperature:<br>Thi-R3(Slave13) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1109                | 31110                              | Heat exchanger temperature:<br>Thi-R3(Slave14) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1110                | 31111                              | Heat exchanger temperature:<br>Thi-R3(Slave15) | -3276   | -32768 - 32767 | 0.1°C/count |          |
| 1111                | 31112                              | Compressor rps display (Master)                | 0       | 0 - 65535      | 1 rps/count | 0-120rps |
| 1112                | 31113                              | Compressor rps display (Slave1)                | 0       | 0 - 65535      | 1 rps/count | 0-120rps |
| 1113                | 31114                              | Compressor rps display (Slave2)                | 0       | 0 - 65535      | 1 rps/count | 0-120rps |
| 1114                | 31115                              | Compressor rps display (Slave3)                | 0       | 0 - 65535      | 1 rps/count | 0-120rps |

| Register<br>Address | Register Number<br>(For reference) | ltem                             | Initial | Range     | Unit        | Note                         |
|---------------------|------------------------------------|----------------------------------|---------|-----------|-------------|------------------------------|
| 1115                | 31116                              | Compressor rps display (Slave4)  | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1116                | 31117                              | Compressor rps display (Slave5)  | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1117                | 31118                              | Compressor rps display (Slave6)  | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1118                | 31119                              | Compressor rps display (Slave7)  | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1119                | 31120                              | Compressor rps display (Slave8)  | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1120                | 31121                              | Compressor rps display (Slave9)  | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1121                | 31122                              | Compressor rps display (Slave10) | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1122                | 31123                              | Compressor rps display (Slave11) | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1123                | 31124                              | Compressor rps display (Slave12) | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1124                | 31125                              | Compressor rps display (Slave13) | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1125                | 31126                              | Compressor rps display (Slave14) | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1126                | 31127                              | Compressor rps display (Slave15) | 0       | 0 - 65535 | 1 rps/count | 0-120rps                     |
| 1127                | 31128                              | Defrost display (Master)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1128                | 31129                              | Defrost display (Slave1)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1129                | 31130                              | Defrost display (Slave2)         | 0       | 0 - 65535 | -           | 0 : Normal 1 : Defrost       |
| 1130                | 31131                              | Defrost display (Slave3)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1131                | 31132                              | Defrost display (Slave4)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1132                | 31133                              | Defrost display (Slave5)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1133                | 31134                              | Defrost display (Slave6)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1134                | 31135                              | Defrost display (Slave7)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1135                | 31136                              | Defrost display (Slave8)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1136                | 31137                              | Defrost display (Slave9)         | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1137                | 31138                              | Defrost display (Slave10)        | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1138                | 31139                              | Defrost display (Slave11)        | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1139                | 31140                              | Defrost display (Slave12)        | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1140                | 31141                              | Defrost display (Slave13)        | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1141                | 31142                              | Defrost display (Slave14)        | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1142                | 31142                              | Defrost display (Slave15)        | 0       | 0 - 65535 | _           | 0 : Normal 1 : Defrost       |
| 1142                | 31143                              | Dell'ost display (Slave 15)      | U       | 0 - 60000 | _           | 0 : Normal                   |
| 1143                | 31144                              | Oil return display (Master)      | 0       | 0 - 65535 | -           | 1 : Oil return               |
| 1144                | 31145                              | Oil return display (Slave1)      | 0       | 0 - 65535 | -           | 0 : Normal<br>1 : Oil return |
| 1145                | 31146                              | Oil return display (Slave2)      | 0       | 0 - 65535 | -           | 0 : Normal<br>1 : Oil return |
| 1146                | 31147                              | Oil return display (Slave3)      | 0       | 0 - 65535 | -           | 0 : Normal<br>1 : Oil return |
| 1147                | 31148                              | Oil return display (Slave4)      | 0       | 0 - 65535 | -           | 0 : Normal<br>1 : Oil return |
| 1148                | 31149                              | Oil return display (Slave5)      | 0       | 0 - 65535 | -           | 0 : Normal<br>1 : Oil return |
| 1149                | 31150                              | Oil return display (Slave6)      | 0       | 0 - 65535 | _           | 0 : Normal<br>1 : Oil return |
| 1150                | 31151                              | Oil return display (Slave7)      | 0       | 0 - 65535 | -           | 0 : Normal<br>1 : Oil return |
| 1151                | 31152                              | Oil return display (Slave8)      | 0       | 0 - 65535 | -           | 0 : Normal<br>1 : Oil return |
| 1152                | 31153                              | Oil return display (Slave9)      | 0       | 0 - 65535 | _           | 0 : Normal<br>1 : Oil return |

| Register<br>Address | Register Number<br>(For reference) | Item                                      | Initial | Range     | Unit | Note                                                          |
|---------------------|------------------------------------|-------------------------------------------|---------|-----------|------|---------------------------------------------------------------|
| 1153                | 31154                              | Oil return display (Slave10)              | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Oil return                                  |
| 1154                | 31155                              | Oil return display (Slave11)              | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Oil return                                  |
| 1155                | 31156                              | Oil return display (Slave12)              | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Oil return                                  |
| 1156                | 31157                              | Oil return display (Slave13)              | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Oil return                                  |
| 1157                | 31158                              | Oil return display (Slave14)              | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Oil return                                  |
| 1158                | 31159                              | Oil return display (Slave15)              | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Oil return                                  |
| 1159                | 31160                              | Abnormal stop status display (Master)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1160                | 31161                              | Abnormal stop status display (Slave1)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1161                | 31162                              | Abnormal stop status display (Slave2)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1162                | 31163                              | Abnormal stop status display (Slave3)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1163                | 31164                              | Abnormal stop status display (Slave4)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1164                | 31165                              | Abnormal stop status display (Slave5)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1165                | 31166                              | Abnormal stop status display (Slave6)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1166                | 31167                              | Abnormal stop status display (Slave7)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1167                | 31168                              | Abnormal stop status display (Slave8)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1168                | 31169                              | Abnormal stop status display (Slave9)     | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1169                | 31170                              | Abnormal stop status display (Slave10)    | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1170                | 31171                              | Abnormal stop status display (Slave11)    | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1171                | 31172                              | Abnormal stop status display (Slave12)    | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1172                | 31173                              | Abnormal stop status display (Slave13)    | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1173                | 31174                              | Abnormal stop status display (Slave14)    | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1174                | 31175                              | Abnormal stop status display (Slave15)    | 0       | 0 - 65535 | -    | 0 : Normal<br>1 : Abnormal stop                               |
| 1175                | 31176                              | Digital output (X4d)<br>Function (Master) | 0       | 0 - 65535 | -    | 0 : System run/stop 1 : Heating/Cooling 2 : System fan ON/OFF |
| 1176                | 31177                              | Digital output (X4d)<br>Function (Slave1) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF         |
| 1177                | 31178                              | Digital output (X4d)<br>Function (Slave2) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF         |
| 1178                | 31179                              | Digital output (X4d)<br>Function (Slave3) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF         |
| 1179                | 31180                              | Digital output (X4d)<br>Function (Slave4) | 0       | 0 - 65535 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF         |
| 1180                | 31181                              | Digital output (X4d)<br>Function (Slave5) | 0       | 0 - 65535 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF         |

| Register<br>Address | Register Number<br>(For reference) | Item                                       | Initial | Range     | Unit | Note                                                  |
|---------------------|------------------------------------|--------------------------------------------|---------|-----------|------|-------------------------------------------------------|
| 1181                | 31182                              | Digital output (X4d)<br>Function (Slave6)  | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1182                | 31183                              | Digital output (X4d)<br>Function (Slave7)  | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1183                | 31184                              | Digital output (X4d)<br>Function (Slave8)  | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1184                | 31185                              | Digital output (X4d)<br>Function (Slave9)  | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1185                | 31186                              | Digital output (X4d)<br>Function (Slave10) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1186                | 31187                              | Digital output (X4d)<br>Function (Slave11) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1187                | 31188                              | Digital output (X4d)<br>Function (Slave12) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1188                | 31189                              | Digital output (X4d)<br>Function (Slave13) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1189                | 31190                              | Digital output (X4d)<br>Function (Slave14) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1190                | 31191                              | Digital output (X4d)<br>Function (Slave15) | 0       | 0 - 65535 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |

```
[Register address "2" Set temperature display example]
<0.5°C/count>
18=9°C
36=18°C
50=25°C
60=30°C
```

```
[Register address "6" Return air temperature display example]
<0.1°C/count>
10=1°C
30=3°C
500=50°C
600=60°C
```

```
[Master/Slave1~15]
  <SW1 AHU Interface address >
     SW1:0=Master
     SW1:1=AHU Interface No.1 (Slave1)
     SW1:2=AHU Interface No.2 (Slave2)
     SW1:3=AHU Interface No.3 (Slave3)
     SW1:4=AHU Interface No.4 (Slave4)
     SW1:5=AHU Interface No.5 (Slave5)
     SW1:6=AHU Interface No.6 (Slave6)
     SW1:7=AHU Interface No.7 (Slave7)
     SW1:8=AHU Interface No.8 (Slave8)
     SW1:9=AHU Interface No.9 (Slave9)
     SW1: A=AHU Interface No.10 (Slave10)
     SW1: B=AHU Interface No.11 (Slave11)
     SW1: C=AHU Interface No.12 (Slave12)
     SW1: D=AHU Interface No.13 (Slave13)
     SW1: E=AHU Interface No.14 (Slave14)
     SW1: F=AHU Interface No.15 (Slave15)
```

```
[Error code display example]
0:Normal
1:E1
7:E7
99:E99
```

```
[Raw Packet Example (Register address "2")]

Modbus Address (SW5, 6): 10

Function Code : Read Input Register (0 x 04)

Register Address : 2 (Set temperature display)

⇒ 0a 04 00 02 00 01

Count of register number to be read

Register Address: 2

Function Code : 0 x 04

Modbus Address: 10 (0 x 0a)
```

# 4.7 Holding register

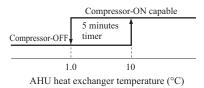
[Query]

The query message specifies the start address of the register and a value.

The register addressed starting at zero. For example, register number "40001" must be requested by sending an address of "0".

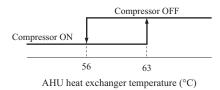
- The holding registers (readable, changeable, 2-byte data) are as follows.
- If data outside the range is received, the data is not accepted and an error is returned

| Register<br>Address | Register Number (For reference) | Item                                                                             | Initial | Range     | Unit        | Note                                                        |
|---------------------|---------------------------------|----------------------------------------------------------------------------------|---------|-----------|-------------|-------------------------------------------------------------|
| 0                   | 40001                           | Run/Stop command                                                                 | 0       | 0 - 1     | -           | 0 : Stop<br>1 : Run                                         |
| 1                   | 40002                           | Operation mode command                                                           | 0       | 0 - 1     | _           | 0 : Cooling<br>1 : Heating                                  |
| 2                   | 40003                           | Set temperature command                                                          | 46      | 32 - 60   | 0.5°C/count | 16-30°C                                                     |
| 3                   | 40004                           | Temperature control<br>Gain command                                              | 5       | 1 - 100   | 0.1 /count  | Compressor speed<br>Adjustment Gain                         |
| 4                   | 40005                           | Emergency stop command                                                           | 0       | 0 - 1     | -           | 0 : Emergency stop<br>release<br>1 : Emergency stop         |
| 5                   | 40006                           | CPU reset command                                                                | 0       | 0 - 1     | _           | 0 : NOP 1 : Reset                                           |
| 6                   | 40007                           | Compressor accumulated time all reset command                                    | 0       | 0 - 1     | _           | 0 : NOP 1 : Reset                                           |
| 7                   | 40008                           | Capacity control command                                                         | 0       | 0 - 10000 | 0.01 /count | 0-100%                                                      |
| 8                   | 40009                           | Capacity step up control  – Step-up rate command                                 | 50      | 30 - 70   | 0.1%/count  | 3-7%                                                        |
| 9                   | 40010                           | Silent mode command                                                              | 0       | 0 - 1     | _           | 0 : OFF 1 : ON                                              |
| 10                  | 40011                           | Analog output command                                                            | 0       | 0 - 100   | 0.1V/count  | 0-10V                                                       |
| 11                  | 40012                           | Optimum compressor speed control                                                 | 1       | 0 - 1     | _           | 0 : Invalid<br>1 : Valid                                    |
| 12                  | 40013                           | Optimum compressor speed setting                                                 | 75      | 40 - 90   | 1 %/count   | 40-90%                                                      |
| 13                  | 40014                           | Rotation control - Constant capacity control                                     | 0       | 0 - 1     | -           | 0 : Invalid<br>1 : Valid                                    |
| 14                  | 40015                           | Defrost control - Constant capacity control                                      | 0       | 0 - 1     | -           | 0 : Invalid<br>1 : Valid                                    |
| 15                  | 40016                           | Rotation hour                                                                    | 168     | 1 - 364   | 1 H/count   | 1-364hours                                                  |
| 16                  | 40017                           | System stop -<br>Delay time setting for Fan ON/OFF output<br>(in a cooling mode) | 0       | 0 - 3     | -           | 0 : Invalid<br>1 : Setting1<br>2 : Setting2<br>3 : Setting3 |
| 17                  | 40018                           | System stop -<br>Delay time setting for Fan ON/OFF output<br>(in a heating mode) | 0       | 0 - 3     | П           | 0 : Invalid<br>1 : Setting1<br>2 : Setting2<br>3 : Setting3 |
| 18                  | 40019                           | Emergency stop -<br>Fan ON/OFF setting (in a cooling mode)                       | 0       | 0 - 3     | _           | 0 : Invalid<br>1 : Setting1<br>2 : Setting2<br>3 : Setting3 |
| 19                  | 40020                           | Emergency stop -<br>Fan ON/OFF setting (in a heating mode)                       | 0       | 0 - 3     | -           | 0 : Invalid<br>1 : Setting1<br>2 : Setting2<br>3 : Setting3 |


| Register<br>Address | Register Number<br>(For reference) | Item                                                | Initial | Range | Unit | Note                                                                |
|---------------------|------------------------------------|-----------------------------------------------------|---------|-------|------|---------------------------------------------------------------------|
| 1000                | 41001                              | Compressor accumulated time reset command (Master)  |         |       | _    | 0 : NOP 1 : Reset                                                   |
| 1001                | 41002                              | Compressor accumulated time reset command (Slave1)  | 0       | 0 - 1 | _    | 0:NOP 1:Reset                                                       |
| 1002                | 41003                              | Compressor accumulated time reset command (Slave2)  | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1003                | 41004                              | Compressor accumulated time reset command (Slave3)  | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1004                | 41005                              | Compressor accumulated time reset command (Slave4)  | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1005                | 41006                              | Compressor accumulated time reset command (Slave5)  | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1006                | 41007                              | Compressor accumulated time reset command (Slave6)  | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1007                | 41008                              | Compressor accumulated time reset command (Slave7)  | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1008                | 41009                              | Compressor accumulated time reset command (Slave8)  | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1009                | 41010                              | Compressor accumulated time reset command (Slave9)  | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1010                | 41011                              | Compressor accumulated time reset command (Slave10) | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1011                | 41012                              | Compressor accumulated time reset command (Slave11) | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1012                | 41013                              | Compressor accumulated time reset command (Slave12) | 0       | 0 - 1 | _    | 0:NOP 1:Reset                                                       |
| 1013                | 41014                              | Compressor accumulated time reset command (Slave13) | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1014                | 41015                              | Compressor accumulated time reset command (Slave14) | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1015                | 41016                              | Compressor accumulated time reset command (Slave15) | 0       | 0 - 1 | _    | 0 : NOP 1 : Reset                                                   |
| 1016                | 41017                              | Digital output (X4d) Function(Master)               | 0       | 0 - 2 | _    | 0 : System run/stop<br>1 : Heating/Cooling<br>2 : System fan ON/OFF |
| 1017                | 41018                              | Digital output (X4d) Function(Slave1)               | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF               |
| 1018                | 41019                              | Digital output (X4d) Function(Slave2)               | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF               |
| 1019                | 41020                              | Digital output (X4d) Function(Slave3)               | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF               |
| 1020                | 41021                              | Digital output (X4d) Function(Slave4)               | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF               |
| 1021                | 41022                              | Digital output (X4d) Function(Slave5)               | 0       | 0 - 2 | -    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF               |
| 1022                | 41023                              | Digital output (X4d) Function(Slave6)               | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF               |
| 1023                | 41024                              | Digital output (X4d) Function(Slave7)               | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF               |

| Register<br>Address | Register Number (For reference) | Item                                   | Initial | Range | Unit | Note                                                  |
|---------------------|---------------------------------|----------------------------------------|---------|-------|------|-------------------------------------------------------|
| 1024                | 41025                           | Digital output (X4d) Function(Slave8)  | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1025                | 41026                           | Digital output (X4d) Function(Slave9)  | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1026                | 41027                           | Digital output (X4d) Function(Slave10) | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1027                | 41028                           | Digital output (X4d) Function(Slave11) | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1028                | 41029                           | Digital output (X4d) Function(Slave12) | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1029                | 41030                           | Digital output (X4d) Function(Slave13) | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1030                | 41031                           | Digital output (X4d) Function(Slave14) | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |
| 1031                | 41032                           | Digital output (X4d) Function(Slave15) | 0       | 0 - 2 | _    | 0 : Run/Stop<br>1 : Heating/Cooling<br>2 : Fan ON/OFF |

# 5. Protection control


# 5.1 Cooling frost protection

To prevent frosting during cooling mode operation, the compressor-OFF if the AHU heat exchanger temperature (detected with Thi-R) drops to 1.0 °C or lower at 4 minutes after the compressor-ON. If the AHU heat exchanger temperature is 1.0 °C or lower after 5 minutes, the AHU Interface is controlled compressor-OFF. If it becomes 10 °C or higher, the control terminates.



# 5.2 Heating overload protection

If the AHU heat exchanger temperature (detected with Thi-R) at 63°C or higher is detected for 2 seconds continuously, the compressor stops. When the compressor is restarted after a 3-minute delay, if a temperature at 63°C or higher is detected for 2 seconds continuously within 60 minutes after initial detection and if this is detected 5 times consecutively, the compressor stops with the anomalous stop (E8). Anomalous stop occurs also when the AHU heat exchanger temperature at 63°C or higher is detected for 6 minutes continuously.



### 5.3 Compressor inching prevention control

### (a) 3-minute timer

When the compressor has been stopped by the thermostat, remote control operation switch or anomalous condition, its restart will be inhibited for 3 minutes. However, the 3-minute timer is invalidated at the power on the electric power source for the unit.

#### (b) 3-minute forced operation timer

Compressor will not stop for 3 minutes after the compressor ON. However, it stops immediately when the unit is stopped by means of the ON/OFF switch or when the thermostat is turned OFF by the change of operation mode.

# 5.4 Fan control during the defrost control and the heating oil return control

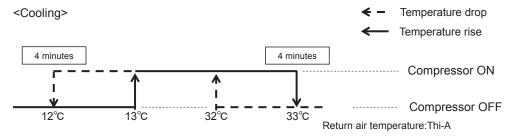
It is necessary to stop the fan motor at AHU side during the defrost control (during defrost and heating oil return controls)

When the fan motor cannot be stopped under the conditions for use of AIR HANDLING UNIT, however, it becomes possible to continue the fan control during defrost control and heating oil return controls so far as the following conditions are satisfied.

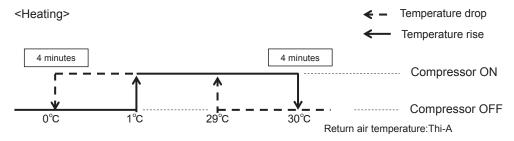
Unless these conditions are satisfied, stop the fan motor at AHU side while defrost control and oil return control signals are output\*.

#### <Conditions to continue the operation of fan motor at AHU side during defrost control>

It is limited to when the height difference is 20 m or less between the outdoor unit and AHU heat exchanger.


\* Confirmation of defrost control and oil return control signals ... Signals are output from Digital output: X4c of AHU-KIT-SP2.

If any one of outdoor units enters the defrost control and oil return controls when two or more outdoor units are connected, Digital output: X4c outputs signals.


### 5.5 Forced compressor OFF control by suction temperature

The compressor stops for protection if the air-conditioner is used beyond its range of use.

· If AHU Interface suction temperature (detected with Thi-A) is detected lower than 12.0°C or higher than 33.0°C for 4 minutes continuously during cooling mode operation, the compressor is turned OFF.



• If AHU Interface suction temperature (detected with Thi-A) is detected lower than 0.0°C or higher than 30.0°C for 4 minutes continuously during the heating mode operation, the compressor is turned OFF.



# 6. Error display

# 6.1 Abnormal temperature sensor (return air/heat exchanger) broken wire/short-circuit detection

#### (a) Broken wire detection

When the return air temperature sensor detects -50°C or lower or the heat exchanger temperature sensor detect -50°C or lower for 5 seconds continuously, the compressor stops. After 3-minute delay, the compressor restarts but, if it is detected again within 60 minutes after the initial detection for 6 minutes continuously, stops again (the return air temperature sensor: E7, the heat exchanger temperature sensor: E6).

#### (b) Short-circuit detection

If the heat exchanger temperature sensor detects short-circuit for 5 seconds continuously within 2 minutes to 2 minutes 20 seconds after the compressor ON during cooling operation, the compressor stops (E6).

### 6.2 Trouble/error detection

- When it is stopped by the operation of protective device, or other, it stops with "Error stop".
- If any error stop occurs during system operation, following operations occur.
  - If any error occurs on Master/Slave and outdoor unit during system operation, it stops only Master/Slave and outdoor unit on which the error occurred.
  - In case of a cascade control system, operation continues unless an entire unit error.
  - If all Master/Slave units in the system stop by error during system operation, the system error occurs.
- Slave stops with the error stop if it becomes unable to communicate with Master.
- If Master becomes unable to communicate with Slave, it handles the Slave, which becomes unable to communicate, as an error unit.
  - Even if Master becomes unable to communicated with Slave, it acts as normal and continues the system operation.
- Once Master restores its communication with remote control, it stops with the error stop if it becomes unable to communicate with the remote control.

## Error code list

| Error code | Description                                           | Error conditions                                                                                                               | System stop* |
|------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------|
| E1         | Remote control communication error                    | When it cannot communicate with the remote control for 2 minutes while it is recognizing the connection to the remote control. | 0            |
| E2         | Address duplication                                   | When addresses are duplicated on the communication between Master and Slave.                                                   |              |
| E5         | Outdoor unit communication error                      | When it could not communicated with the outdoor unit for 2 minutes continuously during operation.                              |              |
| E6         | Broken heat exchanger temperature sensor wire         | When a broken heat exchanger temperature sensor wire is detected.                                                              |              |
| E7         | Broken return temperature sensor wire                 | When a broken return temperature sensor wire is detected.                                                                      | 0            |
| E8         | Heating overload error                                | When a heating overload is detected. (See 5. Protection control.)                                                              |              |
| E10        | Excessive number of units connected to remote control |                                                                                                                                |              |
| E14        | Master/Slave communication error                      | When communication error is detected between Master and Slave.                                                                 |              |
| E63        | Emergency stop                                        | When digital input or emergency stop signal is received from Modbus.                                                           | 0            |

<sup>\*</sup> If E1, E7 or E63 is detected, the system stops immediately.

# 6.3 Trouble/error display

#### Error display

If any error occurs, AHU Interface displays the error contents with LED on PCB.

Under the cascade control, the error contents are displayed with each PCB LED.

If two or more errors occur on AHU Interface and outdoor unit, the error display on AHU Interface supersedes.

Error code of smaller number supersedes the others.

#### Error confirmation

If any error occurs in the system, Master outputs "Error" from the digital output X4a.

If any error occurred on AHU-KIT-SP2 or outdoor unit, check the error with the following methods.

- Error code display on remote control
- · Error code display by Modbus communication
- · "Error" output by digital output: X4a
- · Flicker of LED on PCB (Red)

#### Supplementary for error confirmation

If any error occurs on Slave system during cascade control, the error code is sent to Master.

In such occasion, the remote control does not show "Error". It is displayed with "Backup".

The remote control or digital output cannot display any error on Slave.

To check each error on Slave, it is necessary to use Modbus communication.

### ● LED display on AHU-KIT-SP PCB

- · LED1 (Green) flickers continuously normally.
- $\cdot$  LED2 (Red) flickers if any error occurs.
- · LED2 (Red) flickers indicate following errors.

| Error code | Description                                        | LED2 (Red) display* |
|------------|----------------------------------------------------|---------------------|
| E1         | Remote control communication error                 | 3 times             |
| E2         | Address duplication                                | Once                |
| E5         | Outdoor unit communication error                   | 2 times             |
| E6         | Broken heat exchanger temperature sensor coil      | Once                |
| E7         | Broken return temperature sensor coil              | Once                |
| E8         | Heating overload error                             | Once                |
| E10        | Excess number of units connected to remote control | OFF                 |
| E14        | Master/slave communication error                   | 3 times             |
| E63        | Emergency stop                                     | Continuous          |

 $<sup>\</sup>bigstar$  LED2 (Red): 5-second cycle, flickers for 0.5 sec.

# 6.4 Error mode reset (Error reset)

Error displays occur in 6.2 can be turned off (reset) with the Run/Stop operation from operating device.

Run/Stop operation: Means operation from system stop to system operation. (Digital input, Modbus, remote control)

If AHU Interface Master recognizes the Run/Stop operation, it turns off the error display in the system (AHU Interface Slave and outdoor unit)

If the Run/Stop is operated while an error is not reset, the error display repeats.

# **AIR HANDLING UNIT INTERFACE**



# MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.

2-3 Marunouchi 3-chome, Chiyoda-ku, Tokyo 100-8332, Japan https://www.mhi-mth.co.jp/en/